Model of Nonuniform Channel for the Charge Carrier Transport in Nanoscale FETs

Article Preview

Abstract:

Mobility degradation during gate length scaling is a well established experimental fact, which is confirmed also by Monte –Carlo simulation. We have analyzed the physical reason for this degradation using experimental and modeling data obtained in classic drift-diffusional approximation with electric field dependences of electron mobility. We have shown that this dependence is a main reason for mobility degradation in nanoscale FETs, which means also that the same reason will limit the drain current in future post-silicon CMOS generation with new materials like narrow band III/V compounds or graphene with the highest carrier velocity near 108 cm/s.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-65

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Skotnicki, C. Fenouillet-Beranger et al.: IEEE Trans. on ED Vol. 55 (2008), p.96.

Google Scholar

[2] Y.M. Meziani, J. Lusakowski, W. Knap, N. Dyakonova, F. Teppe, K. Romanjek, M. Ferrier, R. Clerc, G. Ghibaudo, F. Boeuf, and T. Skotnicki: J. Appl. Phys. Vol. 96 (2004), p.5761.

DOI: 10.1109/essder.2004.1356513

Google Scholar

[3] K. Romanjek, F. Andrieu, T. Ernst, and G. Ghibaudo: Solid State Electron. Vol. 49 (2005), p.721.

Google Scholar

[4] J. Lusakowski, W. Knap, Y. Meziani, J. -P. Cesso, A. El Fatimy, R. Tauk, N. Dyakonova, G. Ghibaudo, F. Boeuf, and T. Skotnicki: Appl. Phys. Lett. Vol. 87 (2005), p.053507(3).

DOI: 10.1063/1.1993747

Google Scholar

[5] A. Cros, K. Romanjek, D. Fleury, S. Harrison, R. Cerutti, P. Coronel, B. Dumont, A. Pouydebasque, R. Wacquez, B. Duriez, R. Gwoziecki, F. Boeuf, H. Brut, G. Ghibaudo, and T. Skotnicky, in: IEDM Tech. Dig. (2006), 663–666.

DOI: 10.1109/iedm.2006.346872

Google Scholar

[6] R. Wang, H. Liu, R. Huang, J. Zhuge, L. Zhang, D. -W. Kim, X. Zhang, D. Park, and Y. Wang: IEEE Trans. Electron Devices Vol. 55 (2008), p.2960.

Google Scholar

[7] V. Barral, T. Poiroux, S. Barraud, F. Andrieu, O. Faynot, D. Munteanu, J. -L. Autran, and S. Deleonibus: IEEE Trans. Nanotechnol. Vol. 8 (2009), p.167.

DOI: 10.1109/tnano.2008.2010128

Google Scholar

[8] V. Barral, T. Poiroux, J. Saint-Martin, D. Munteanu, J. -L. Autran, and S. Deleonibus: IEEE Trans. Electron Devices Vol. 56 (2009), p.420.

DOI: 10.1109/ted.2008.2011681

Google Scholar

[9] A.A. Frantsuzov, N.I. Boyarkina, and V.P. Popov: Semicond. Vol. 42 (2008), p.215.

Google Scholar

[10] C. Dupré, T. Ernst, J. -M. Hartmann, et al.: Journ. Appl. Phys. Vol. 102 (2007), p.104505(8).

Google Scholar

[11] V.P. Popov: ECS Transactions Vol. 25 (2009), p.411.

Google Scholar

[12] Ch. Jeong, D.A. Antoniadis, M.S. Lundstrom. IEEE Trans. on ED Vol. 56 (2009), p.2762.

Google Scholar

[13] O.V. Naumova, I.V. Antonova, V.P. Popov, et al.: Semicond. Vol. 37 (2003), p.1222.

Google Scholar

[14] Y.V. Nastaushev, O.V. Naumova, V.P. Popov, R.F. Patent 2250535 (2005).

Google Scholar

[15] C. Canali, G. Majni, R. Minder, and G. Ottaviani: IEEE Trans. on ED Vol. 22 (1975), p, 1045.

Google Scholar

[16] F. Schwierz: Nature Nanotechnology Vol. Vol. 5 (2010), p.487.

Google Scholar

[17] K.A. Jenkins, Y. -M. Lin, D. Farmer, et al.: ECS Transactions Vol. 28 (2010), p.3.

Google Scholar

[18] Lei Liao, Yung-Chen Lin, Mingqiang Bao, Rui Cheng, et al.: Nature Vol. 467 (2010), p.305.

Google Scholar