Effects of High–Energy Neutrons on Advanced SOI MOSFETs

Article Preview

Abstract:

This work discusses the degradations caused by high-energy neutrons in advanced MOSFETs and compares them with damages created by γ-rays reviewing the original researches performed in our laboratory during last years [1-6]. Fully–depleted (FD) Silicon-on-Insulator (SOI) MOSFETs and Multiple-Gate (MuG) FETs with different geometries (notably gate lengths down to 50 nm) have been considered. The impact of radiation on device behavior has been addressed through the variation of threshold voltage (VT), subthreshold slope (S), transconductance maximum (Gmmax) and drain-induced barrier lowering (DIBL). First, it is shown that degradations caused by high-energy neutrons in FD SOI and MuG MOSFETs are largely similar to that caused by γ-rays with similar doses [1,3]. Second, it is revealed that, contrarily to their generally-believed immunity to irradiation [7, 8], very short-channel MuGFETs with thin gate oxide can become extremely sensitive to the total dose effect [2,3]. The possible reason is proposed. Third, a comparative investigation of high-energy neutrons effects on strained and non-strained devices demonstrates a clear difference in their response to high-energy neutrons exposure [6]. Finally, based on simulations and modeling of partially –depleted (PD) SOI CMOS D Flip-Flop, we show how radiation-induced oxide charge and interface states build-up can affect well-known tolerance of SOI devices to transient effects [4,5].

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-105

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Alvarado, V. Kilchytska, O. Militaru, G. Berger and D. Flandre, in: Proceedings of EuroSOI 2009, 20-21 January 2009, Goteborg, Sweden, pp.101-102.

Google Scholar

[2] V. Kilchytska, J. Alvarado, N. Collaert, R. Rooyackers, O. Militaru, G. Berger and D. Flandre: Solid-State Electronics Vol. 54 (2010), pp.196-202.

DOI: 10.1016/j.sse.2009.12.019

Google Scholar

[3] V. Kilchytska, J. Alvarado, N. Collaert, R. Rooyackers, O. Militaru, G. Berger and D. Flandre: IEEE Transactions on Nuclear Science Vol. 57 (2010), pp.1764-70.

DOI: 10.1109/tns.2009.2037419

Google Scholar

[4] J. Alvarado, V. Kilchytska, E. Boufouss and D. Flandre. in: Proceedings of EUROSOI 2010, Grenoble, France, January 2010, pp.81-82.

Google Scholar

[5] J. Alvarado, E. Boufouss, V. Kilchytska and D. Flandre: Microelectronics reliability Vol. 50 (2010), pp.1852-1856.

DOI: 10.1016/j.microrel.2010.07.040

Google Scholar

[6] V. Kilchytska, J. Alvarado, S. Put, N. Collaert, E. Simoen, C. Claeys, O. Miliratu, G. Berger and D. Flandre, in: Proceedings of ESREF 2010, Gaeta, Italy, 12-15 Oct. (2010).

Google Scholar

[7] M. Gaillardin, P. Paillet, V. Ferlet-Cavrois, O. Faynot, C. Jahan and S. Cristoloveanu: IEEE Transactions on Nuclear Science Vol. 53 (2006), pp.3237-3241.

DOI: 10.1109/tns.2006.884351

Google Scholar

[8] S. Put, E. Simoen, N. Collaert, C. Claeys, M. Van Uffelen and P. Leroux: IEEE Transactions on Nuclear Science Vol. 54 (2007), pp.2227-2232.

DOI: 10.1109/tns.2007.911420

Google Scholar

[9] T. Nakamura, M. Baba, E. Ibe, Ya. Yahagi and H. Kameyama. Terrestrial Neutron-induced soft errors in advanced memory devices, World Scientific, Singapore (2008).

DOI: 10.1142/6661

Google Scholar

[10] ITRS 2009 http: /www. itrs. net/Links/2009ITRS.

Google Scholar

[11] X. Wu, P.C.H. Chan, A. Orozco, A. Vazquez, A. Chaudhry and J. -P. Colinge: Solid State Electronics Vol. 50 (2006), pp.287-290.

DOI: 10.1016/j.sse.2005.12.017

Google Scholar

[12] J. -P. Colinge, A. Orozco, J. Rudee, W. Xiong, C.R. Cleavelin, T. Schulz, K. Schrufern G. Knoblinger and P. Partuno: IEEE Transactions on Nuclear Science Vol. 53, 2006, pp.3237-3241.

DOI: 10.1109/tns.2006.885841

Google Scholar

[13] A. Griffoni, S. Gerardin, G. Meneghesso, A. Paccagnella, E. Simoen, S. Put and C. Claeys: IEEE Transaction on Nuclear Science Vol. 55 (2008), pp.3182-3188.

DOI: 10.1109/tns.2008.2007234

Google Scholar

[14] J. -P. Colinge, A. Terao: IEEE Transactions on Nuclear Science Vol. 40 (1993), pp.78-81.

Google Scholar

[15] D. Kobayashi, E. Simoen, S. Put, A. Griffoni, M. Poizat, K. Hirose, C. Claeys. in: Proceedings of RADECS 2010, 20-24 Sept. 2010, Aqua Dome Langenfeld, Austria. to be published in IEEE Transactions on Nuclear Sciences.

Google Scholar

[16] G.C. Messenger, M.S. Ash, The effects of radiation on electronic systems. 2nd ed. Van Nostrand Reinhold (1992).

Google Scholar

[17] W. Chang: Journal of Electronic Materials Vol. 21 (1992), pp.693-699.

Google Scholar

[18] S. Duzellier, G. Berger in Radiation Effects on Embedded Systems , edited by R. Velazco et al, pp.201-232, Springer (2007).

Google Scholar

[19] T. Rudenko, A. Rudenko, V. Kilchytska, S. Cristoloveanu, T. Ernst, J. -P. Colinge, D. Flandre and V. Dessard: Solid State Electronics Vol. 48 (2004), pp.389-399.

DOI: 10.1016/j.sse.2003.09.004

Google Scholar

[20] N. Collaert et al. in: Proceedings of Symposium on VLSI Technology (2005), pp.108-109.

Google Scholar

[21] V. Kilchytska, G. Pailloncy, D. Lederer, J. -P. Raskin, N. Collaert, M. Jurczak and D. Flandre: IEEE Electron Device Letters Vol. 28 ( 2007), p.419 – 421.

DOI: 10.1109/led.2007.895374

Google Scholar

[22] J. Ramos, E. Augendre, A. Kottantharayil, et al., in Proceedings of ICSSICT 2006, pp.72-74.

Google Scholar

[23] I. Ferain, L. Pantisano, A. Kottantharayil, J. Petry, L. Trojman, N. Collaert, M. Jurczak and K. De Meyer: Microelectronic Engineering Vol. 84 (2007), pp.1882-1885.

DOI: 10.1016/j.mee.2007.04.074

Google Scholar

[24] V. Kilchytska, J. Alvarado, N. Collaert, R. Rooyakers, S. Put, C. Claeys and D. Flandre: Proc. of EuroSOI 2010, Grenoble, January 2010, pp.119-120., to be published in Solid State Electronics.

DOI: 10.1016/j.sse.2009.12.019

Google Scholar