Charge Carrier Capture by Prominent Defect Centers in 4H-SiC

Article Preview

Abstract:

The knowledge of capture properties of electrically active defects is of primary importance as it helps to understand which deep states are effective in controlling the excess free carriers’ lifetime. Combining DLTS capture experiments with thermal emission measurements enables an overall thermodynamic description of deep states, thus making it possible to characterize recombination centers in semiconductor-based devices. In the present study, junction DLTS capture rate measurements were employed to extract the true capture cross-sections (inversely proportional to the carrier lifetime) and capture energy barriers for the main lifetime limiting defects in 4H-SiC (silicon carbide). A peculiar forward bias dependence of the capture parameters was observed for the shallow boron (B) hole trap. Capture rate measurements on the deep boron (D-center) trap also evidenced the presence of two capture mechanisms, thus allowing discrimination of D1 and D2 deep states within the D-center DLTS peak. The results were combined with activation energies and apparent capture cross-sections to obtain the free energy (ΔG) of electronic activation for the analysed deep states.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] N.T. Son, X.T. Trinh, L.S. Løvlie, B.G. Svensson, K. Kawahara, J. Suda, T. Kimoto, T. Umeda, J. Isoya, T. Makino, T. Ohshima, and E. Janzén, "Negative-U system of carbon vacancy in 4H–SiC," Phys. Rev. Lett. 109, 187603 (2012).

DOI: 10.1103/physrevlett.109.187603

Google Scholar

[2] P.B. Klein, B.V. Shanabrook, S.W. Huh, A.Y. Polyakov, M. Skowronski, J.J. Sumakeris, M.J. O'Loughlin; Lifetime-limiting defects in n− 4H-SiC epilayers. Appl. Phys. Lett. 30 January 2006; 88 (5): 052110.

DOI: 10.1063/1.2170144

Google Scholar

[3] L. Storasta, P. Bergman, E. Janzén, and C. Hallin, Mater. Sci. Forum 389-393, 549 (2002).

DOI: 10.4028/www.scientific.net/msf.389-393.549

Google Scholar

[4] Misagh Ghezellou, Piyush Kumar, Marianne E. Bathen, Robert Karsthof, Einar Ö. Sveinbjörnsson, Ulrike Grossner, J. Peder Bergman, Lasse Vines, Jawad Ul-Hassan; The role of boron related defects in limiting charge carrier lifetime in 4H–SiC epitaxial layers. APL Mater. 1 March 2023; 11 (3): 031107.

DOI: 10.1063/5.0142415

Google Scholar

[5] Blood P and J. W Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States, Academic Press 1992, p.433.

Google Scholar

[6] K. Tian, J. Via, K. Elgammal, A. Schöner, W. Kaplan, R. Karhu, J. Ul-Hassan, A. Hallén. Modelling the static on-state current voltage characteristics for a 10 kV 4H-SiC PiN diode. Material Science in Semiconductor Processing 115, 105097 (2020).

DOI: 10.1016/j.mssp.2020.105097

Google Scholar

[7] E Omotoso et al 2020 Mater. Res. Express 7 025901.

Google Scholar

[8] https://www.ioffe.ru/SVA/NSM/Semicond/SiC/bandstr.html.

Google Scholar

[9] Bathen, M.E.; Galeckas, A.; Müting, J.; Ayedh, H.M.; Grossner, U.; Coutinho, J.; Frodason, Y.K.; Vines, L. Electrical charge state identification and control for the silicon vacancy in 4H-SiC. NPJ Quantum Inf. 2019, 5, 111.

DOI: 10.1038/s41534-019-0227-y

Google Scholar

[10] Capan, I.; Brodar, T.; Pastuović, Z.; Siegele, R.; Ohshima, T.; Sato, S.I.; Makino, T.; Snoj, L.; Radulović, V.; Coutinho, J.; et al. Double negatively charged carbon vacancy at the h- and k-sites in 4H-SiC: Combined Laplace-DLTS and DFT study. J. Appl. Phys. 2018, 123, 161597.

DOI: 10.1063/1.5011124

Google Scholar

[11] Capan, I.; Brodar, T.; Coutinho, J.; Ohshima, T.; Markevich, V.P.; Peaker, A.R. Acceptor levels of the carbon vacancy in 4 H-SiC: Combining Laplace deep level transient spectroscopy with density functional modeling. J. Appl. Phys. 2018, 124, 245701.

DOI: 10.1063/1.5063773

Google Scholar

[12] Capan, I.; Brodar, T.; Yamazaki, Y.; Oki, Y.; Ohshima, T.; Chiba, Y.; Hijikata, Y.; Snoj, L.; Radulović, V. Influence of neutron radiation on majority and minority carrier traps in n-type 4H-SiC. Nucl. Inst. Methods Phys. Res. 2020, B478, 224–228.

DOI: 10.1016/j.nimb.2020.07.005

Google Scholar

[13] Blood P and J. W Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States, Academic Press 1992, p.567.

Google Scholar

[14] Blood P and J. W Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States, Academic Press 1992, p.639.

Google Scholar