DFT Calculations on the Termination of 4H-SiC Non-Polar Surfaces during Photoelectrochemical Pore Formation

Article Preview

Abstract:

In our previous work, single-crystalline porous 4H-SiC thin foils were successfully released from a monocrystalline 4H-SiC wafer by photoelectrochemical etching (PECE). This technology is promising for the next-generation power device fabrication processes (e.g. cost-efficient engineered substrates) and micro-electromechanical systems. The surface terminations of the pore walls will affect the behavior in the further fabrication process and application, thus motivating the need for detailed investigations. This work based on DFT calculations focuses on the surface terminations of five 4H-SiC non-polar surfaces, i.e. {10-10}, {11-20}, {21-30}, {31-40} and {32-50}, which can well represent the walls of the C-face etched pores penetrating through the released foil along the [0001] direction. The surface energies of the stoichiometric surfaces are found to be in the sequence of {11-20} < {32-50} < {21-30} < {10-10} < {31-40}. All these surfaces have high chemical affinity to H2O and even more to HF. In particular, for the complete surface termination by HF, the relative stability of these crystal planes can be changed and depends on the HF chemical potential. For example, in the range of HF chemical potential from −4.10 to −1.70 eV, the 4H-SiC {10-10} becomes more stable than the {11-20}. This preliminary research provides insight into the surface chemistry of the 4H-SiC non-polar surfaces, especially the {21-30}, {31-40} and {32-50}, which have rarely been investigated.

You have full access to the following eBook

Info:

Periodical:

Pages:

69-76

Citation:

Online since:

September 2025

Export:

Share:

Citation:

* - Corresponding Author

[1] X. Yuan, I. Laird, S. Walder, Opportunities, challenges, and potential solutions in the application of fast-switching SiC power devices and converters, IEEE Trans. Power Electron. 36 (2021) 3925-3945.

DOI: 10.1109/tpel.2020.3024862

Google Scholar

[2] K. Mairhofer, S. Larisegger, A. Foelske, M. Sauer, G. Friedbacher, G. Fafilek, New insights into the photoassisted anodic reactions of n-type 4H SiC semiconductors, Monatsh. Chemie 155 (2024) 683-696.

DOI: 10.1007/s00706-024-03212-5

Google Scholar

[3] S. Whiteley, A. Sorensen, J. J. Vajo, R. Sfadia, T. D. Ladd, S. Cui, J. Graetz, Dopant selective photoelectrochemical etching of SiC, J. Electrochem. Soc. 170 (2023) 036508.

DOI: 10.1149/1945-7111/acc553

Google Scholar

[4] M. Leitgeb, G. Pfusterschmied, S. Schwarz, B. Depuydt, J. Cho, U. Schmid, Communication-current oscillations in photoelectrochemical etching of monocrystalline 4H silicon carbide, ECS J. Solid State Sci. Technol. 10 (2021) 073003.

DOI: 10.1149/2162-8777/ac10b3

Google Scholar

[5] M. Leitgeb, C. Zellner, M. Schneider, U. Schmid, Porous single crystalline 4H silicon carbide rugate mirrors APL Mater. 5 (2017) 106106.

DOI: 10.1063/1.5001876

Google Scholar

[6] M. Leitgeb, C. Zellner, C. Hufnagl, M. Schneider, S. Schwab, H. Hutter, U. Schmid, Stacked layers of different porosity in 4H SiC substrates applying a photoelectrochemical approach, J. Electrochem. Soc. 164 (2017) E337.

DOI: 10.1149/2.1081712jes

Google Scholar

[7] C. S. Solanki, R. R. Bilyalov, J. Poortmans, J. Nijs, R. Mertens, Porous silicon layer transfer processes for solar cells, Sol. Energ. Mater. Sol. C. 83 (2004) 101-113.

DOI: 10.1016/j.solmat.2004.02.016

Google Scholar

[8] M. Xu, Y. R. Girish, P. Wu, H. M. Manukumar, S. M. Byrappa, Udayabhanu, K. Byrappa, Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications, Mater. Today Commun. 28 (2021) 102533.

DOI: 10.1016/j.mtcomm.2021.102533

Google Scholar

[9] G. Tuci, Y. Liu, A. Rossin, X. Guo, C. Pham, G. Giambastiani, C. Pham-Huu, Porous silicon carbide (SiC): a chance for improving catalysts or just another active-phase carrier? Chem. Rev. 121 (2021) 10559-10665.

DOI: 10.1021/acs.chemrev.1c00269

Google Scholar

[10] M. Leitgeb, C. Zellner, M. Schneider, U. Schmid, A combination of metal assisted photochemical and photoelectrochemical etching for tailored porosification of 4H SiC substrates, ECS J. Solid State Sci. Technol. 5 (2016) P556.

DOI: 10.1149/2.0041610jss

Google Scholar

[11] S. Dhar, O. Seitz, M. D. Halls, S. Choi, Y. J. Chabal, L. C. Feldman, Chemical properties of xxidized silicon carbide surfaces upon etching in hydrofluoric acid, J. Am. Chem. Soc. 131 (2009) 16808-16813.

DOI: 10.1021/ja9053465

Google Scholar

[12] P. Giannozz, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21 (2009) 395502.

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[13] G. Prandini, A. Marrazzo, I. E. Castelli, N. Mounet, N. Marzari, Precision and efficiency in solid-state pseudopotential calculations, Npj Comput. Mater. 4 (2018) 72.

DOI: 10.1038/s41524-018-0127-2

Google Scholar

[14] A. L. Hannam and P. T. B. Shaffer, Revised X-ray diffraction line intensities for silicon carbide polytypes, J. Appl. Crystallogr. 2 (1969) 45-48.

DOI: 10.1107/s0021889869006510

Google Scholar

[15] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132 (2010) 154104.

DOI: 10.1063/1.3382344

Google Scholar

[16] E. Rauls, Z. Hajnal, P. Deák, T. Frauenheim, Theoretical study of the nonpolar surfaces and their oxygen passivation in 4H- 6H-SiC, Phys. Rev. B 64 (2001) 245323.

DOI: 10.4028/www.scientific.net/msf.338-342.365

Google Scholar

[17] G. Wulff, On the question of speed of growth and dissolution of crystal surfaces, Z. Kristallogr, 34 (1901) 449.

Google Scholar

[18] X.-G. Wang, A. Chaka, M. Scheffler, Effect of the environment on alpha-Al2O3 (0001) surface structures, Phys. Rev. Lett. 84 (2000) 3650-3653.

Google Scholar

[19] G. Cicala, P. Capezzuto, G. Bruno, M. C. Rossi, Growth chemistry of SiC alloys from SiF4-CH4 plasmas, Appl. Surf. Sci. 184 (2001) 66-71.

DOI: 10.1016/s0169-4332(01)00665-1

Google Scholar

[20] H. Suzuki, H. Araki, M. Tosa, T. Noda, SiC film formation from fluorosilane gas by plasma CVD, J. Cryst. Growth 294 (2006) 464-468.

DOI: 10.1016/j.jcrysgro.2006.07.003

Google Scholar

[21] K. Reuter, M. Scheffler, Composition, structure, and stability of RuO2 (110) as a function of oxygen pressure, Phys. Rev. B 65 (2001) 035406.

Google Scholar