SiC Schottky-Barrier Diode without Ion-Implanted P-Type Regions

Article Preview

Abstract:

This paper shows results of SiC Schottky diodes fabricated without ion-implanted P-type regions. Diodes with blocking voltages up to 4,500 V are demonstrated utilizing an epitaxial P-type ring with sloped edges for the edge termination. Reverse-bias currents at temperatures higher than 60°C, and at nominal blocking voltages of 650 V, 1200 V, and 1700 V, are shown to match the theoretical values based on the two fundamental current mechanisms: tunneling and thermionic emission. In comparison to JBS and MPS diodes, the whole anode area is active, which enables homogeneous current flow and comparable isothermal characteristics without the usual wafer thinning. In addition, the non-thinned wafer results in larger thermal capacitance, allowing for higher repetitive peak surge currents for the same junction temperature within the maximum operating temperature of 175°C.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] B.J. Baliga, Modern Silicon Carbide Power Devices, first ed., Singapore, 2024.

Google Scholar

[2] F. Roccaforte, P. Fiorenza, M. Vivona, G. Greco, F. Giannazzo, Selective Doping in Silicon Carbide Power Devices, Materials 14 (2021) 3923.

DOI: 10.3390/ma14143923

Google Scholar

[3] T. Kimoto, J. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications, first ed., Singapore, 2014.

DOI: 10.1002/9781118313534

Google Scholar

[4] K. Ueno, T. Urushidani, K. Hashimoto, Y. Seki, Al/Ti Schottky barrier diodes with the guard-ring termination for 6H-SiC, Proceedings of 1995 International Symposium on Power Semiconductor Devices & ICs, Yokohama (1995) 107-111.

DOI: 10.1109/ispsd.1995.515018

Google Scholar

[5] S. Dimitrijev, J. Han, U. S. Patent 10,971,580. (2021)

Google Scholar

[6] B.J. Baliga, Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design, and Applications, first ed., Duxford, United Kingdom, 2018.

Google Scholar

[7] Konishi, K., et al., Stacking fault expansion from basal plane dislocations converted into threading edge dislocations in 4H-SiC epilayers under high current stress. J. App. Phys. 114 (2013) 014504.

DOI: 10.1063/1.4812590

Google Scholar

[8] T. Kimoto, K. Yamada, H. Niwa, J. Suda, Promise and Challenges of High-Voltage SiC Bipolar Power Devices. Energies 9 (2016) 908.

DOI: 10.3390/en9110908

Google Scholar

[9] T. Kimoto, Material science and device physics in SiC technology for high-voltage power devices, Jpn. J. App. Phys. 54 (2015) 040103.

DOI: 10.7567/jjap.54.040103

Google Scholar

[10] J. Nicholls, S. Dimitrijev, P. Tanner, J. Han, Description and Verification of the Fundamental Current Mechanisms in Silicon Carbide Schottky Barrier Diodes, Sci. Rep. 9 (2019) 3754.

DOI: 10.1038/s41598-019-40287-1

Google Scholar

[11] S. Palanisamy, J. Kowalsky, J. Lutz, T. Basler, R. Rupp, and J. Moazzami-Fallah, Repetitive surge current test of SiC MPS diode with load in bipolar regime, Proceedings of 2018 International Symposium on Power Semiconductor Devices & ICs, Chicago (2018) 367-370.

DOI: 10.1109/ispsd.2018.8393679

Google Scholar

[12] X. Huang, G. Wang, M. C. Lee, A. Q. Huang, Reliability of 4H-SiC SBD/JBS diodes under repetitive surge current stress, Proceedings of 2012 IEEE Energy Conversion Congress and Exposition, Raleigh (2012) 2245-2248.

DOI: 10.1109/ecce.2012.6342436

Google Scholar

[13] X. Jiang, J. Yu, J. Chen, H. Yu, Z. Li, J. Wang, Z. J. Shen, Comparative evaluation of surge current capability of the body diode of SiC JMOS, SiC DMOS, and SiC Schottky barrier diode, Proceedings of 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans (2020) 1111-1115.

DOI: 10.1109/apec39645.2020.9124530

Google Scholar

[14] J. Wu, N. Ren, H. Wang, K. Sheng, 1.2-kV 4H-SiC merged PiN Schottky diode with improved surge current capability, IEEE J. Emerg. Sel. Top. Power Electron. 7 (2019) 1496-1504.

DOI: 10.1109/jestpe.2019.2921970

Google Scholar

[15] N. Ren, K. Sheng, 1.2kV SiC merged PiN Schottky diode with improved surge current capability, Proceedings of 2020 International Symposium on Power Semiconductor Devices & ICs, Vienna (2020) 214-217.

DOI: 10.1109/ispsd46842.2020.9170158

Google Scholar

[16] R. Radhakrishnan, N. Cueva, T. Witt, and R. L. Woodin, Analysis of forward surge performance of SiC Schottky diodes, Mater. Sci. Forum 924 (2018) 621-624.

DOI: 10.4028/www.scientific.net/msf.924.621

Google Scholar

[17] V. Banu, P. Brosselard, X. Jordá, J. Montserrat, P. Godignon, J. Millan, Behaviour of 1.2kV SiC JBS diodes under repetitive high power stress, Microelectron. Reliab. 48 (2008) 1444-1448.

DOI: 10.1016/j.microrel.2008.07.054

Google Scholar

[18] P. Brosselard, N. Camara, V. Banu, X. Jordá, M. Vellvehi, P. Godignon, J. Millan, Bipolar conduction impact on electrical characteristics and reliability of 1.2- and 3.5-kV 4H-SiC JBS diodes, IEEE Trans. Electron Devices 55 (2008) 1847-1856.

DOI: 10.1109/ted.2008.926636

Google Scholar

[19] X. Jiang, D. Zhai, J. Chen, F. Yuan, Z. Li, Z. He, Z. J. Shen, J. Wang, Comparison study of surge current capability of body diode of SiC MOSFET and SiC Schottky diode, Proceedings of 2018 IEEE Energy Conversion Congress and Exposition, Portland (2018) 845-849.

DOI: 10.1109/ecce.2018.8558388

Google Scholar

[20] S. Fichtner, J. Lutz, T. Basler, R. Rupp, R. Gerlach, Electro-Thermal Simulations and Experimental Results on the Surge Current Capability of 1200 V SiC MPS Diodes, Proceedings of 2014; 8th International Conference on Integrated Power Electronics Systems, Nuremberg (2014) 1-6.

DOI: 10.1016/j.microrel.2015.06.088

Google Scholar

[21] X. Hongyi, R. Na, W. Jiupeng, Z. Zhengyun, G. Qing, S. Kuang, The impact of process conditions on surge current capability of 1.2 kV SiC JBS and MPS diodes, Materials 14 (2021) 663.

DOI: 10.3390/ma14030663

Google Scholar

[22] N. Ren, J. Wu, L. Liu, K. Sheng, Improving surge current capability of SiC merged PiN Schottky diode by adding plasma spreading layers, IEEE Trans. Power Electron. 35 (2020) 11316-11320.

DOI: 10.1109/tpel.2020.2988938

Google Scholar

[23] S. Fichtner, S. Frankeser, J. Lutz, R. Rupp, T. Basler, R. Gerlach, Ruggedness of 1200V SiC MPS diodes. Microelectron. Reliab. 55 (2015) 1677-1681.

DOI: 10.1016/j.microrel.2015.06.088

Google Scholar

[24] V. Banu, M. Berthou, J. Montserrat, X. Jordá, P. Godignon, Surge current robustness improvement of SiC junction barrier Schottky diodes by layout design, Romanian J. Inf. Sci. Technol. 20 (2017) 369-384.

DOI: 10.1109/smicnd.2017.8101183

Google Scholar

[25] B. Heinze, J. Lutz, M. Neumeister, R. Rupp, M. Holz, Surge current ruggedness of silicon carbide Schottky- and merged-PiN-Schottky diodes, Proceedings of 2009 International Symposium on Power Semiconductor Devices & ICs, Orlando (2008) 245-248.

DOI: 10.1109/ispsd.2008.4538944

Google Scholar

[26] J. León, X. Perpiñà, V. Banu, J. Montserrat, M. Berthou, M. Vellvehi, P. Godignon, X. Jordà, Temperature effects on the ruggedness of SiC Schottky diodes under surge current, Microelectron. Reliab. 54 (2014) 2207-2212.

DOI: 10.1016/j.microrel.2014.07.020

Google Scholar

[27] B. Zhang, Y. Zhong, P. Cui, Y. Cui, M. Xu, H. Linewih, J. Han, The surge current failure and thermal analysis of 4H-SiC Schottky barrier diode, IEEE. Trans. Electron Devices (2024) 1-6.

DOI: 10.1109/ted.2024.3385389

Google Scholar

[28] S. G. Sundaresan, V. Mulpuri, R. Singh, Surge current and avalanche robustness of commercial 1200 V SiC Schottky diodes, Mater. Sci. Forum 963 (2019) 544-548.

DOI: 10.4028/www.scientific.net/msf.963.544

Google Scholar

[29] J. León, M. Berthou, X. Perpiñà, V. Banu, J. Montserrat, M. Vellvehi, P. Godignon, X. Jordà, Structural analysis of SiC Schottky diodes failure mechanism under current overload, J. Phys. D: Appl. Phys. 47 (2014) 055102.

DOI: 10.1088/0022-3727/47/5/055102

Google Scholar

[30] V. Banu, P. Brosselard, X. Jordá, M. Alexandru, J. Millan, SiC Schottky diode surge current analysis and application design using behavioral SPICE models, Proceedings of 2012 International Semiconductor Conference, Sinaia (2012) 359-362.

DOI: 10.1109/smicnd.2012.6400761

Google Scholar

[31] V. Banu, P. Godignon, X. Jordá, X. Perpiñà, J. Millan, Remarkable increase in surge current capability of SiC Schottky diodes using press pack contacts, Mater. Sci. Forum 740-742 (2013) 873-876.

DOI: 10.4028/www.scientific.net/msf.740-742.873

Google Scholar

[32] F. Carastro, J. Mari, T. Zoels, B. Rowden, P. Losee, L. Stevanovic, Investigation on diode surge forward current ruggedness of Si and SiC power modules, Proceedings of 2016 18th European Conference on Power Electronics and Applications, Karlsruhe (2016) 1-10.

DOI: 10.1109/epe.2016.7695685

Google Scholar

[33] L. Liu, J. Wu, H. Xu, Z. Zhu, N. Ren, Q. Guo, J. Zhang, K. Sheng, The impact of the hexagonal and circular cell designs on the characteristics and ruggedness for 4H-SiC MPS diodes, IEEE Trans. Electron Devices 69 (2022) 1226-1232.

DOI: 10.1109/ted.2022.3146113

Google Scholar

[34] V. Banu, M. Berthou, J. Montserrat, X. Jordá, P. Godignon, Impact of layout on the surge current robustness of 1.2 KV SiC diodes, Proceedings of 2017 International Semiconductor Conference, Sinaia (2017) 147-150.

DOI: 10.1109/smicnd.2017.8101183

Google Scholar

[35] J. Wu, N. Ren, K. Sheng, Electrothermal coupling model with distributed heat sources for junction temperature calculation during surges, IEEE Trans. Power Electron. 37 (2022) 11887-11895.

DOI: 10.1109/tpel.2022.3164988

Google Scholar

[36] W. Zhong, Y. Tang, C. Li, H. Chen, Y. Zhang, Y. Bai, X. Liu, Electro-thermal analysis of 1.2kV-100A SiC JBS diodes under surge current stress, Proceedings of 2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China, Shenzhen (2019) 22-25.

DOI: 10.1109/sslchinaifws49075.2019.9019788

Google Scholar

[37] J. Millan, V. Banu, P. Brosselard, X. Jordá, A. Perez-Tomas, and P. Godignon, Electrical performance at high temperature and surge current of 1.2 kV power rectifiers: Comparison between Si PiN, 4H-SiC Schottky and JBS diodes, Proceedings of 2008 International Semiconductor Conference, Sinaia (2008) 53-59.

DOI: 10.1109/smicnd.2008.4703326

Google Scholar

[38] J. Wu, N. Ren, K. Sheng, Design and experimental study of 1.2kV 4H-SiC merged PiN Schottky diode, Proceedings of 2019 International Symposium on Power Semiconductor Devices & ICs, Shanghai (2019) 203-206.

DOI: 10.1109/ispsd.2019.8757619

Google Scholar

[39] V. Banu, X. Jordá, J. Montserrat, P. Godignon, J. Millan, P. Brosselard, Accelerated test for reliability analysis of SiC diodes, Proceedings of 2009 International Symposium on Power Semiconductor Devices & ICs, Barcelona (2009) 267-270.

DOI: 10.1109/ispsd.2009.5158053

Google Scholar

[40] J. Damcevska, S. Dimitrijev, D. Haasmann, and P. Tanner, The effect of wafer thinning and thermal capacitance on chip temperature of SiC Schottky diodes during surge currents, Sci. Rep. 13 (2023) 19189.

DOI: 10.1038/s41598-023-46538-6

Google Scholar