SiC MOSFETs C-V Capacitance Curves with Negative Biased Drain

Article Preview

Abstract:

There are some technological issues in SiC MOSFETs that are still unsolved. One of the main problems is the high density of traps/defects at the SiC/SiO2 interface. Traps distribution at such interface is complex and it affects the overall performance of the device. The high-density of defects at the SiC/SiO2 interface is a relevant problem since it can influence the overall performance of the device, causing detrimental impacts on threshold voltage stability, channel mobility and leakage current amplitude. Due to the fundamental importance of the SiC/SiO2 interface characterization, several techniques have been employed to investigate defects properties related to this region. In this work non-classical C-V measurements are performed. Capacitance is measured between Gate and Source terminals while a fix DC voltage is imposed on the Drain. This latter is considered among positive values in the first case, while it is chosen as a negative voltage in the second case. The arising capacitances in both cases show an unexpected behavior which can be related to interface properties. To this aim numerical analysis is performed in Sentaurus TCAD environment.

You have full access to the following eBook

Info:

Periodical:

Pages:

9-14

Citation:

Online since:

September 2025

Export:

Share:

Citation:

* - Corresponding Author

[1] B. J. Baliga, Fundamentals of power semiconductor devices, Springer Science & Business Media, (2010).

Google Scholar

[2] C. Raynaud, et al., Comparison of trapping–detrapping properties of mobile charge in alkali contaminated metal‐oxide‐silicon carbide structures, Applied physics letters 66, no. 18: 2340-2342, (1995).

DOI: 10.1063/1.113976

Google Scholar

[3] D. Peters et al., Investigation of threshold voltage stability of SiC MOSFETs, ISPSD, (2018).

Google Scholar

[4] V. V. Afanasev, et al., Intrinsic SiC/SiO2 interface states, physica status solidi (a) 162, no. 1: 321-337, (1997).

DOI: 10.1002/1521-396x(199707)162:1<321::aid-pssa321>3.0.co;2-f

Google Scholar

[5] Lancellotti, L., Lisi, N., Veneri, P. D., Bobeico, E., Matacena, I., & Guerriero, P. (2019, July). Graphene-on-Silicon solar cells with graphite contacts. In 2019 International Conference on Clean Electrical Power (ICCEP) (pp.199-203). IEEE.

DOI: 10.1109/iccep.2019.8890134

Google Scholar

[6] Gobbo, C., Di Palma, V., Trifiletti, V., Malerba, C., Valentini, M., Matacena, I., ... & Tseberlidis, G. (2023). Effect of the ZnSnO/AZO interface on the charge extraction in Cd-free kesterite solar cells. Energies, 16(10), 4137.

DOI: 10.3390/en16104137

Google Scholar

[7] Sonnet, A. M., Hinkle, C.L., Heh, D., Bersuker, G., & Vogel, E.M. (2010). Impact of semiconductor and interface-state capacitance on metal/high-k/GaAs capacitance–voltage characteristics. IEEE transactions on electron devices, 57(10), 2599-2606.

DOI: 10.1109/ted.2010.2059029

Google Scholar

[8] Lancellotti, L., Bobeico, E., Della Noce, M., Veneri, P. D., & Matacena, I. (2018, June). Work function determination of transparent contact for a: Si/c-Si heterojunction solar cells. In 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp.1-5). IEEE.

DOI: 10.1109/eeeic.2018.8493739

Google Scholar

[9] Matacena, I., Guerriero, P., Lancellotti, L., Alfano, B., De Maria, A., La Ferrara, V., ... & Daliento, S. (2023). Impedance spectroscopy analysis of perovskite solar cell stability. Energies, 16(13), 4951.

DOI: 10.3390/en16134951

Google Scholar

[10] Westerhoff, U., Kurbach, K., Lienesch, F., & Kurrat, M. (2016). Analysis of lithium‐ion battery models based on electrochemical impedance spectroscopy. Energy Technology, 4(12), 1620-1630.

DOI: 10.1002/ente.201600154

Google Scholar

[11] Matacena, I., Lancellotti, L., Daliento, S., Alfano, B., De Maria, A., La Ferrara, V., ... & Guerriero, P. (2023). Impedance Spectroscopy of Perovskite Solar Cells With SnO 2 Embedding Graphene Nanoplatelets. IEEE Journal of Photovoltaics.

DOI: 10.1109/jphotov.2023.3301674

Google Scholar

[12] Turut, A. (2020). On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. Turkish Journal of Physics, 44(4), 302-347.

DOI: 10.3906/fiz-2007-11

Google Scholar

[13] Matacena, I., et al. "Capacitance–Voltage Investigation of Encapsulated Graphene/Silicon Solar Cells." IEEE Transactions on Electron Devices (2023).

DOI: 10.1109/ted.2023.3282917

Google Scholar

[14] Gaberšček, M. (2022). Impedance spectroscopy of battery cells: Theory versus experiment. Current Opinion in Electrochemistry, 32, 100917

DOI: 10.1016/j.coelec.2021.100917

Google Scholar

[15] Chang, Yao-Wen, et al. "Charge-based capacitance measurement for bias-dependent capacitance." IEEE Electron Device Letters 27.5 (2006): 390-392.

DOI: 10.1109/led.2006.873368

Google Scholar

[16] Almora, Osbel, et al. "On Mott-Schottky analysis interpretation of capacitance measurements in organometal perovskite solar cells." Applied Physics Letters 109.17 (2016).

DOI: 10.1063/1.4966127

Google Scholar

[17] Gobbo, Carla, et al. "Effect of the ZnSnO/AZO interface on the charge extraction in Cd-free kesterite solar cells." Energies 16.10 (2023): 4137.

DOI: 10.3390/en16104137

Google Scholar

[18] Matacena, Ilaria, et al. "Forward bias capacitance investigation as a powerful tool to monitor graphene/silicon interfaces." Solar Energy 226 (2021): 1-8.

DOI: 10.1016/j.solener.2021.08.016

Google Scholar

[19] Heerens, W-C. "Application of capacitance techniques in sensor design." Journal of physics E: Scientific instruments 19.11 (1986): 897.

DOI: 10.1088/0022-3735/19/11/002

Google Scholar

[20] Schroder, D.K. Semiconductor Material and Device Characterization, 3rd ed.; Wiley: Hoboken, NJ, USA, 2006.

Google Scholar

[21] Hu, Chenming Calvin. "Modern Semiconductor Devices for Integrated Circuits." Part I: Electrons and holes in a semiconductor (2011).

Google Scholar

[22] Matacena, L. Maresca, M. Riccio, A. Irace, G. Breglio, S. Daliento, & A. Castellazzi, (2022). SiC MOSFET CV Characteristics with Positive Biased Drain. In Materials Science Forum (Vol. 1062, pp.653-657). Trans Tech Publications Ltd

DOI: 10.4028/p-2tyqfr

Google Scholar

[23] L. Maresca et al. Influence of the SiC/SiO 2 SiC MOSFET Interface Traps Distribution on C–V Measurements Evaluated by TCAD Simulations. IEEE Journal of Emerging and Selected Topics in Power Electronics 9.2 (2019): 2171-2179.

DOI: 10.1109/jestpe.2019.2940143

Google Scholar

[24] Matacena, I., Maresca, L., Riccio, M., Irace, A., Breglio, G., & Daliento, S. (2022, June). Experimental Analysis of CV and IV Curves Hysteresis in SiC MOSFETs. In Materials Science Forum (Vol. 1062, pp.669-675). Trans Tech Publications Ltd.

DOI: 10.4028/p-bzki64

Google Scholar

[25] Matacena, Ilaria, et al. "SiC MOSFET CV Curves Analysis with Floating Drain Configuration." Materials Science Forum. Vol. 1062. Trans Tech Publications Ltd, 2022.

DOI: 10.4028/p-96q66n

Google Scholar

[26] Matacena, Ilaria, et al. "Evaluation of Interface Traps Type, Energy Level and Density of SiC MOSFETs by Means of CV Curves TCAD Simulations." Materials Science Forum. Vol. 1004. Trans Tech Publications Ltd, 2020.

DOI: 10.4028/www.scientific.net/msf.1004.608

Google Scholar

[27] Wei, Jiaxing, et al. "Interfacial damage extraction method for SiC power MOSFETs based on CV characteristics." 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD). IEEE, 2017.

DOI: 10.23919/ispsd.2017.7988992

Google Scholar

[28] Tsuji, Katsuhiro, et al. "Measurement of MOSFET CV curve variation using CBCM method." 2009 IEEE International Conference on Microelectronic Test Structures. IEEE, 2009.

DOI: 10.1109/icmts.2009.4814615

Google Scholar

[29] Jouha, Wadia, et al. "Physical study of SiC power MOSFETs towards HTRB stress based on CV characteristics." IEEE Transactions on Device and Materials Reliability 20.3 (2020): 506-511.

DOI: 10.1109/tdmr.2020.2999029

Google Scholar

[30] Matacena, Ilaria, et al. "SiC MOSFETs Capacitance study." e-Prime-Advances in Electrical Engineering, Electronics and Energy (2023): 100251.

DOI: 10.1016/j.prime.2023.100251

Google Scholar

[31] Matacena, I., Maresca, L., Riccio, M., Irace, A., Breglio, G., Castellazzi, A., & Daliento, S. (2023, July). SiC MOSFETs Biased CV Curves: A Temperature Investigation. In Materials Science Forum (Vol. 1091, pp.31-36). Trans Tech Publications Ltd.

DOI: 10.4028/p-mqpk26

Google Scholar

[32] Matacena, I., Maresca, L., Riccio, M., Irace, A., Breglio, G., & Daliento, S. (2024). Frequency Investigation of SiC MOSFETs CV Curves with Biased Drain. Solid State Phenomena, 360, 145-149.

DOI: 10.4028/p-o37qxb

Google Scholar

[33] Matacena, I., Maresca, L., Riccio, M., Irace, A., Breglio, G., Castellazzi, A., & Daliento, S. (2022, July). SiC/SiO 2 interface traps effect on SiC MOSFETs Gate capacitance with biased Drain. In 2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) (pp.1-5). IEEE.

DOI: 10.1109/ipfa55383.2022.9915748

Google Scholar