[1]
B. J. Baliga, Fundamentals of power semiconductor devices, Springer Science & Business Media, (2010).
Google Scholar
[2]
C. Raynaud, et al., Comparison of trapping–detrapping properties of mobile charge in alkali contaminated metal‐oxide‐silicon carbide structures, Applied physics letters 66, no. 18: 2340-2342, (1995).
DOI: 10.1063/1.113976
Google Scholar
[3]
D. Peters et al., Investigation of threshold voltage stability of SiC MOSFETs, ISPSD, (2018).
Google Scholar
[4]
V. V. Afanasev, et al., Intrinsic SiC/SiO2 interface states, physica status solidi (a) 162, no. 1: 321-337, (1997).
DOI: 10.1002/1521-396x(199707)162:1<321::aid-pssa321>3.0.co;2-f
Google Scholar
[5]
Lancellotti, L., Lisi, N., Veneri, P. D., Bobeico, E., Matacena, I., & Guerriero, P. (2019, July). Graphene-on-Silicon solar cells with graphite contacts. In 2019 International Conference on Clean Electrical Power (ICCEP) (pp.199-203). IEEE.
DOI: 10.1109/iccep.2019.8890134
Google Scholar
[6]
Gobbo, C., Di Palma, V., Trifiletti, V., Malerba, C., Valentini, M., Matacena, I., ... & Tseberlidis, G. (2023). Effect of the ZnSnO/AZO interface on the charge extraction in Cd-free kesterite solar cells. Energies, 16(10), 4137.
DOI: 10.3390/en16104137
Google Scholar
[7]
Sonnet, A. M., Hinkle, C.L., Heh, D., Bersuker, G., & Vogel, E.M. (2010). Impact of semiconductor and interface-state capacitance on metal/high-k/GaAs capacitance–voltage characteristics. IEEE transactions on electron devices, 57(10), 2599-2606.
DOI: 10.1109/ted.2010.2059029
Google Scholar
[8]
Lancellotti, L., Bobeico, E., Della Noce, M., Veneri, P. D., & Matacena, I. (2018, June). Work function determination of transparent contact for a: Si/c-Si heterojunction solar cells. In 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp.1-5). IEEE.
DOI: 10.1109/eeeic.2018.8493739
Google Scholar
[9]
Matacena, I., Guerriero, P., Lancellotti, L., Alfano, B., De Maria, A., La Ferrara, V., ... & Daliento, S. (2023). Impedance spectroscopy analysis of perovskite solar cell stability. Energies, 16(13), 4951.
DOI: 10.3390/en16134951
Google Scholar
[10]
Westerhoff, U., Kurbach, K., Lienesch, F., & Kurrat, M. (2016). Analysis of lithium‐ion battery models based on electrochemical impedance spectroscopy. Energy Technology, 4(12), 1620-1630.
DOI: 10.1002/ente.201600154
Google Scholar
[11]
Matacena, I., Lancellotti, L., Daliento, S., Alfano, B., De Maria, A., La Ferrara, V., ... & Guerriero, P. (2023). Impedance Spectroscopy of Perovskite Solar Cells With SnO 2 Embedding Graphene Nanoplatelets. IEEE Journal of Photovoltaics.
DOI: 10.1109/jphotov.2023.3301674
Google Scholar
[12]
Turut, A. (2020). On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. Turkish Journal of Physics, 44(4), 302-347.
DOI: 10.3906/fiz-2007-11
Google Scholar
[13]
Matacena, I., et al. "Capacitance–Voltage Investigation of Encapsulated Graphene/Silicon Solar Cells." IEEE Transactions on Electron Devices (2023).
DOI: 10.1109/ted.2023.3282917
Google Scholar
[14]
Gaberšček, M. (2022). Impedance spectroscopy of battery cells: Theory versus experiment. Current Opinion in Electrochemistry, 32, 100917
DOI: 10.1016/j.coelec.2021.100917
Google Scholar
[15]
Chang, Yao-Wen, et al. "Charge-based capacitance measurement for bias-dependent capacitance." IEEE Electron Device Letters 27.5 (2006): 390-392.
DOI: 10.1109/led.2006.873368
Google Scholar
[16]
Almora, Osbel, et al. "On Mott-Schottky analysis interpretation of capacitance measurements in organometal perovskite solar cells." Applied Physics Letters 109.17 (2016).
DOI: 10.1063/1.4966127
Google Scholar
[17]
Gobbo, Carla, et al. "Effect of the ZnSnO/AZO interface on the charge extraction in Cd-free kesterite solar cells." Energies 16.10 (2023): 4137.
DOI: 10.3390/en16104137
Google Scholar
[18]
Matacena, Ilaria, et al. "Forward bias capacitance investigation as a powerful tool to monitor graphene/silicon interfaces." Solar Energy 226 (2021): 1-8.
DOI: 10.1016/j.solener.2021.08.016
Google Scholar
[19]
Heerens, W-C. "Application of capacitance techniques in sensor design." Journal of physics E: Scientific instruments 19.11 (1986): 897.
DOI: 10.1088/0022-3735/19/11/002
Google Scholar
[20]
Schroder, D.K. Semiconductor Material and Device Characterization, 3rd ed.; Wiley: Hoboken, NJ, USA, 2006.
Google Scholar
[21]
Hu, Chenming Calvin. "Modern Semiconductor Devices for Integrated Circuits." Part I: Electrons and holes in a semiconductor (2011).
Google Scholar
[22]
Matacena, L. Maresca, M. Riccio, A. Irace, G. Breglio, S. Daliento, & A. Castellazzi, (2022). SiC MOSFET CV Characteristics with Positive Biased Drain. In Materials Science Forum (Vol. 1062, pp.653-657). Trans Tech Publications Ltd
DOI: 10.4028/p-2tyqfr
Google Scholar
[23]
L. Maresca et al. Influence of the SiC/SiO 2 SiC MOSFET Interface Traps Distribution on C–V Measurements Evaluated by TCAD Simulations. IEEE Journal of Emerging and Selected Topics in Power Electronics 9.2 (2019): 2171-2179.
DOI: 10.1109/jestpe.2019.2940143
Google Scholar
[24]
Matacena, I., Maresca, L., Riccio, M., Irace, A., Breglio, G., & Daliento, S. (2022, June). Experimental Analysis of CV and IV Curves Hysteresis in SiC MOSFETs. In Materials Science Forum (Vol. 1062, pp.669-675). Trans Tech Publications Ltd.
DOI: 10.4028/p-bzki64
Google Scholar
[25]
Matacena, Ilaria, et al. "SiC MOSFET CV Curves Analysis with Floating Drain Configuration." Materials Science Forum. Vol. 1062. Trans Tech Publications Ltd, 2022.
DOI: 10.4028/p-96q66n
Google Scholar
[26]
Matacena, Ilaria, et al. "Evaluation of Interface Traps Type, Energy Level and Density of SiC MOSFETs by Means of CV Curves TCAD Simulations." Materials Science Forum. Vol. 1004. Trans Tech Publications Ltd, 2020.
DOI: 10.4028/www.scientific.net/msf.1004.608
Google Scholar
[27]
Wei, Jiaxing, et al. "Interfacial damage extraction method for SiC power MOSFETs based on CV characteristics." 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD). IEEE, 2017.
DOI: 10.23919/ispsd.2017.7988992
Google Scholar
[28]
Tsuji, Katsuhiro, et al. "Measurement of MOSFET CV curve variation using CBCM method." 2009 IEEE International Conference on Microelectronic Test Structures. IEEE, 2009.
DOI: 10.1109/icmts.2009.4814615
Google Scholar
[29]
Jouha, Wadia, et al. "Physical study of SiC power MOSFETs towards HTRB stress based on CV characteristics." IEEE Transactions on Device and Materials Reliability 20.3 (2020): 506-511.
DOI: 10.1109/tdmr.2020.2999029
Google Scholar
[30]
Matacena, Ilaria, et al. "SiC MOSFETs Capacitance study." e-Prime-Advances in Electrical Engineering, Electronics and Energy (2023): 100251.
DOI: 10.1016/j.prime.2023.100251
Google Scholar
[31]
Matacena, I., Maresca, L., Riccio, M., Irace, A., Breglio, G., Castellazzi, A., & Daliento, S. (2023, July). SiC MOSFETs Biased CV Curves: A Temperature Investigation. In Materials Science Forum (Vol. 1091, pp.31-36). Trans Tech Publications Ltd.
DOI: 10.4028/p-mqpk26
Google Scholar
[32]
Matacena, I., Maresca, L., Riccio, M., Irace, A., Breglio, G., & Daliento, S. (2024). Frequency Investigation of SiC MOSFETs CV Curves with Biased Drain. Solid State Phenomena, 360, 145-149.
DOI: 10.4028/p-o37qxb
Google Scholar
[33]
Matacena, I., Maresca, L., Riccio, M., Irace, A., Breglio, G., Castellazzi, A., & Daliento, S. (2022, July). SiC/SiO 2 interface traps effect on SiC MOSFETs Gate capacitance with biased Drain. In 2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) (pp.1-5). IEEE.
DOI: 10.1109/ipfa55383.2022.9915748
Google Scholar