Single-Event-Burnout in 1.2kV 4H-SiC Lateral RESURF Power MOSFET

Article Preview

Abstract:

Extensive experiments and simulations indicate that Single-Event ion bombardment Effects (SEE) can trigger a Single-Event Burnout (SEB) in 4H-SiC vertical power devices at lower than half of the rated breakdown voltage. This paper investigates the SEB robustness of a 1.2kV 4H-SiC lateral RESURF MOSFET using a 3-D electrothermal device simulator (Sentaurus) with a reported heavy ion model based on high-fidelity radiation data. The maximum VSEB/BVrate ratio of 0.67 is 2.2 times higher than the reported VSEB/BVrate ratio of 0.3 for a 4H-SiC vertical DMOSFET with the same voltage rating. The reason is due to the reduced surface field at the drain terminal and the orthogonality of the heavy ion and impact ionization paths, resulting in less efficient excess carrier generation. This highlights the potential of lateral power devices for use in radiation-hardened environments.

You have full access to the following eBook

Info:

Periodical:

Pages:

29-37

Citation:

Online since:

September 2025

Export:

Share:

Citation:

* - Corresponding Author

[1] B. J. Baliga, Fundamentals of Power Semiconductor Devices, New York, NY, USA: Springer, 2008, p.282.

Google Scholar

[2] C. Martinella et al., Microelectronics Reliability, vol. 128, p.114423, 2022.

Google Scholar

[3] J. A. McPherson et al., IEEE Transactions on Nuclear Science, vol. 68, no. 5, pp.651-658, May 2021.

Google Scholar

[4] J. A. McPherson et al., Materials Science Forum, vol. 1004, pp.889-896, Trans Tech Publications Ltd, 2020.

Google Scholar

[5] S. Banerjee et al., IEEE Electron Device Letters, vol. 22, no. 5, pp.209-211, May 2001.

Google Scholar

[6] K. Chatty et al., IEEE Electron Device Letters, vol. 21, no. 7, pp.356-358, July 2000.

Google Scholar

[7] T. R. Weatherford, Int. J. High Speed Electron. Syst., vol. 13, no. 1, pp.277-292, 2003.

Google Scholar

[8] P. J. Kowal et al., ANS RPSD 2018, LaGrange Park, IL, USA, 2018.

Google Scholar

[9] J. A. McPherson et al., IEEE Trans. Nucl. Sci., vol. 66, no. 1, pp.474-481, Jan. 2019.

Google Scholar

[10] J.M. Lauenstein et al., NASA Goddard Space Flight Center, Greenbelt, MD, USA, Tech. Rep. GSFC-E-DAATN39790, 2014.

DOI: 10.32865/zmdb4220

Google Scholar

[11] C. Martinella et al., Microelectronics Reliability, vol. 128, p.114423, 2022.

Google Scholar

[12] K. Liu et al., IEEE Transactions on Electron Devices, vol. 71, no.8, pp.4891-4896, 2024.

Google Scholar

[13] O. Nilsson et al., High Temp. High Press., vol. 29, no. 1, p.73–79, Jan. 1997.

Google Scholar

[14] Y. S. Touloukian and E. H. Buyco, New York, NY, USA:IFI/Plenum, p.448–450, 1970.

Google Scholar

[15] M. Lades, Ph.D. dissertation, Dept. Elektrotechnik und Informationstechnik, Technische Universität München, München, Germany, 2000.

Google Scholar

[16] H. Niwa et al., Mater. Sci. Forum, vols. 778–780, p.461–466, Feb. 2014.

Google Scholar