[1]
A. P. Gerk and D. Tabor: Indentation hardness and semiconductor-metal transition of germanium and silicon, Nature Vol. 271 (1978), p.732.
DOI: 10.1038/271732a0
Google Scholar
[2]
D.R. Clarke, M.C. Kroll, P.D. Kirchner and R.F. Cook: Amorphization and conductivity of silicon and germanium induced by indentation, Phys. Rev. Lett. Vol. 60 (1988), p.2156.
DOI: 10.1103/physrevlett.60.2156
Google Scholar
[3]
G.M. Pharr, W.C. Oliver, D.S. Harding: New evidence for a pressure-induced phase- transformation during the indentation of silicon, J. Mater. Res. Vol. 6 (1991), p.1129.
DOI: 10.1557/jmr.1991.1129
Google Scholar
[4]
E.R. Weppelmann, J.S. Field, M.V. Swain: Influence of spherical indentor radius on the indentation-induced transformation behaviour of silicon, J. Mater. Sci. Vol. 30 (1995), p.2455.
DOI: 10.1007/bf01184600
Google Scholar
[5]
A. Kailer, Y.G. Gogotsi and K.G. Nickel, Phase transformations of silicon caused by contact loading, J. Appl. Phys. Vol. 87 (1997), p.3057.
DOI: 10.1063/1.364340
Google Scholar
[6]
I. Zarudi and L. C. Zhang: Structure changes in mono-crystalline silicon subjected to indentation - experimental findings, Tribol. Int. Vol. 32 (1999) p.701.
DOI: 10.1016/s0301-679x(99)00103-6
Google Scholar
[7]
J.E. Bradby, J.S. Williams, J. Wong-Leung, M.V. Swain, P. Munroe: Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon, Appl. Phys. Lett. Vol. 77 (2000) p.3749.
DOI: 10.1063/1.1332110
Google Scholar
[8]
J.E. Brady, J.S. Williams and J. Wong-Leung, M.V. Swain, P. Munroe: Mechanical deformation in silicon by micro-indentation, J. Mater. Res. Vol. 16 (2001) p.1500.
DOI: 10.1557/jmr.2001.0209
Google Scholar
[9]
T. Juliano, V. Domnich, Y. Gogotsi, Examining pressure-induced phase transformations in silicon by spherical indentation and Raman spectroscopy: a statistical study, J. Mater. Res. Vol. 19 (2004) p.3099.
DOI: 10.1557/jmr.2004.0403
Google Scholar
[10]
J.Z. Hu, L.D. Merkle, C.S. Menoni, and I.L. Spain: Crystal data for high-pressure phases of silicon. Phys, Rev. B Vol. 34 (1986), p.4679.
DOI: 10.1103/physrevb.34.4679
Google Scholar
[11]
J. Crain, G.J. Ackland, J.R. Maclean, R.O. Piltz, P.D. Hatton, and G.S. Pawley: Reversible pressure-induced structural transitions between metastable phases of silicon, Phys. Rev. B Vol. 50 (1994), p.13043.
DOI: 10.1103/physrevb.50.13043
Google Scholar
[12]
J.J. Gilman: Shear-induced metallization, Philos. Mag. Vol. 67 (1993), p.207.
Google Scholar
[13]
H.S. Leipner, D. Lorenz, A. Zeckzer, H. Lei, P. Grau: Nanoindentation pop-in effect in semiconductors, Physica B Vol 308-310 (2001), p.446.
DOI: 10.1016/s0921-4526(01)00718-9
Google Scholar
[14]
D. Lorenz, A. Zeckzer, U. Hilpert and P. Grau, H. Johansen, H.S. Leipner: Pop-in effect as homogeneous nucleation of dislocations during nanoindentation, Phys. Rev. B Vol. 67 (2003), p.172101.
DOI: 10.1103/physrevb.67.172101
Google Scholar
[15]
I. Zarudi I, L.C. Zhang: Effect of ultraprecision grinding on microstructural change in silicon monocrystals, J Mater. Process. Tech. Vol. 84 (1998) pp.149-58.
DOI: 10.1016/s0924-0136(98)00090-9
Google Scholar
[16]
W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. Vol. 7 (1992) p.1564.
DOI: 10.1557/jmr.1992.1564
Google Scholar
[17]
H. Bei, E.P. George, J.L. Hay, G.M. Pharr: Influence of indenter tip geometry on elastic deformation during nanoindentation, Phys. Rev. Lett. Vol 95 (2005) p.045501.
DOI: 10.1103/physrevlett.95.045501
Google Scholar
[18]
C.T. Lynch: CRC Handbook of Materials Science, 4th ed. CRC Press, Boca Raton, (1986).
Google Scholar
[19]
K.L. Johnson: Contact Mechanics, New York: Cambridge University Press, (1985).
Google Scholar
[20]
L.C. Zhang, I. Zarudi: Towards a Deeper Understanding of Plastic Deformation in Mono-Crystalline Silicon, Int. J. Mech. Sci. Vol. 43 (2001) (1985).
DOI: 10.1016/s0020-7403(01)00024-8
Google Scholar
[21]
I. Zarudi, L.C. Zhang, W.C.D. Cheong, T.X. Yu, The difference of phase distributions in silicon after indentation withBerkovich and spherical indenters, Acta. Mater. Vol. 53 (2005), p.4795.
DOI: 10.1016/j.actamat.2005.06.030
Google Scholar