The Deformation Mechanism at Pop-In: Monocrystalline Silicon under Nanoindentation with a Berkovich Indenter

Abstract:

Article Preview

This paper investigates the “pop-in” behavior of monocrystalline silicon under nanoindentation with a Berkovich indenter. The indentation tests were carried out under ultra-low loads, i.e. 100 μN and 300 μN, with different loading/unloading rates. It was found that with the experimentally determined area function of the indenter tip, the mechanical properties of silicon can be accurately calculated from the load-displacement data, that a pop-in event represents the onset of phase transition, and that a lower loading rate favours a sudden volume change but a rapid loading process tends to generate a gradual slope change of the load-displacement curve.

Info:

Periodical:

Key Engineering Materials (Volumes 389-390)

Edited by:

Tsunemoto Kuriyagawa, Libo Zhou, Jiwang Yan and Nobuhito Yoshihara

Pages:

453-458

DOI:

10.4028/www.scientific.net/KEM.389-390.453

Citation:

L. Chang and L. C. Zhang, "The Deformation Mechanism at Pop-In: Monocrystalline Silicon under Nanoindentation with a Berkovich Indenter", Key Engineering Materials, Vols. 389-390, pp. 453-458, 2009

Online since:

September 2008

Export:

Price:

$35.00

[1] A. P. Gerk and D. Tabor: Indentation hardness and semiconductor-metal transition of germanium and silicon, Nature Vol. 271 (1978), p.732.

DOI: 10.1038/271732a0

[2] D.R. Clarke, M.C. Kroll, P.D. Kirchner and R.F. Cook: Amorphization and conductivity of silicon and germanium induced by indentation, Phys. Rev. Lett. Vol. 60 (1988), p.2156.

DOI: 10.1103/physrevlett.60.2156

[3] G.M. Pharr, W.C. Oliver, D.S. Harding: New evidence for a pressure-induced phase- transformation during the indentation of silicon, J. Mater. Res. Vol. 6 (1991), p.1129.

DOI: 10.1557/jmr.1991.1129

[4] E.R. Weppelmann, J.S. Field, M.V. Swain: Influence of spherical indentor radius on the indentation-induced transformation behaviour of silicon, J. Mater. Sci. Vol. 30 (1995), p.2455.

DOI: 10.1007/bf01184600

[5] A. Kailer, Y.G. Gogotsi and K.G. Nickel, Phase transformations of silicon caused by contact loading, J. Appl. Phys. Vol. 87 (1997), p.3057.

[6] I. Zarudi and L. C. Zhang: Structure changes in mono-crystalline silicon subjected to indentation - experimental findings, Tribol. Int. Vol. 32 (1999) p.701.

DOI: 10.1016/s0301-679x(99)00103-6

[7] J.E. Bradby, J.S. Williams, J. Wong-Leung, M.V. Swain, P. Munroe: Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon, Appl. Phys. Lett. Vol. 77 (2000) p.3749.

DOI: 10.1063/1.1332110

[8] J.E. Brady, J.S. Williams and J. Wong-Leung, M.V. Swain, P. Munroe: Mechanical deformation in silicon by micro-indentation, J. Mater. Res. Vol. 16 (2001) p.1500.

DOI: 10.1557/jmr.2001.0209

[9] T. Juliano, V. Domnich, Y. Gogotsi, Examining pressure-induced phase transformations in silicon by spherical indentation and Raman spectroscopy: a statistical study, J. Mater. Res. Vol. 19 (2004) p.3099.

DOI: 10.1557/jmr.2004.0403

[10] J.Z. Hu, L.D. Merkle, C.S. Menoni, and I.L. Spain: Crystal data for high-pressure phases of silicon. Phys, Rev. B Vol. 34 (1986), p.4679.

DOI: 10.1103/physrevb.34.4679

[11] J. Crain, G.J. Ackland, J.R. Maclean, R.O. Piltz, P.D. Hatton, and G.S. Pawley: Reversible pressure-induced structural transitions between metastable phases of silicon, Phys. Rev. B Vol. 50 (1994), p.13043.

DOI: 10.1103/physrevb.50.13043

[12] J.J. Gilman: Shear-induced metallization, Philos. Mag. Vol. 67 (1993), p.207.

[13] H.S. Leipner, D. Lorenz, A. Zeckzer, H. Lei, P. Grau: Nanoindentation pop-in effect in semiconductors, Physica B Vol 308-310 (2001), p.446.

DOI: 10.1016/s0921-4526(01)00718-9

[14] D. Lorenz, A. Zeckzer, U. Hilpert and P. Grau, H. Johansen, H.S. Leipner: Pop-in effect as homogeneous nucleation of dislocations during nanoindentation, Phys. Rev. B Vol. 67 (2003), p.172101.

DOI: 10.1103/physrevb.67.172101

[15] I. Zarudi I, L.C. Zhang: Effect of ultraprecision grinding on microstructural change in silicon monocrystals, J Mater. Process. Tech. Vol. 84 (1998) pp.149-58.

DOI: 10.1016/s0924-0136(98)00090-9

[16] W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. Vol. 7 (1992) p.1564.

DOI: 10.1557/jmr.1992.1564

[17] H. Bei, E.P. George, J.L. Hay, G.M. Pharr: Influence of indenter tip geometry on elastic deformation during nanoindentation, Phys. Rev. Lett. Vol 95 (2005) p.045501.

DOI: 10.1103/physrevlett.95.045501

[18] C.T. Lynch: CRC Handbook of Materials Science, 4th ed. CRC Press, Boca Raton, (1986).

[19] K.L. Johnson: Contact Mechanics, New York: Cambridge University Press, (1985).

[20] L.C. Zhang, I. Zarudi: Towards a Deeper Understanding of Plastic Deformation in Mono-Crystalline Silicon, Int. J. Mech. Sci. Vol. 43 (2001) (1985).

DOI: 10.1016/s0020-7403(01)00024-8

[21] I. Zarudi, L.C. Zhang, W.C.D. Cheong, T.X. Yu, The difference of phase distributions in silicon after indentation withBerkovich and spherical indenters, Acta. Mater. Vol. 53 (2005), p.4795.

DOI: 10.1016/j.actamat.2005.06.030

In order to see related information, you need to Login.