Aluminum Activation in 4H-SiC Measured on Laterally Contacted MOS Capacitors with a Buried Current-Spreading Layer

Article Preview

Abstract:

The excellent material properties of the wide band gap semiconductor SiC are accompanied by challenges in device processing. Of particular importance is the incomplete activation of implanted Al acceptors after high-temperature annealing. In this work, we present a novel approach in applying the differential-capacitance method to lateral MOS capacitors, where systematic errors in its characterization are reduced by introducing a buried current-spreading layer. We find that the implantation of an additional current-spreading layer significantly reduces series resistance effects and enables a reliable capacitance-voltage measurement of low dopant concentrations of p-type wells in n-type epitaxial layers. The measurement of an Al box-like profile implanted at 500 °C and resulting in a doping concentration of 3·1017 cm-3 shows full activation after annealing at 1800 °C for 30 minutes.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] V. Šimonka, A. Hossinger, J. Weinbub and S. Selberherr, IEEE T. Electron Dev. 65 (2018) 674-679.

Google Scholar

[2] T. Troffer, M. Schadt, T. Frank, H. Itoh, G. Pensl, J. Heindl, H.P. Strunk and M. Maier, Phys. Status Solidi A 162 (1997) 277-298.

DOI: 10.1002/1521-396x(199707)162:1<277::aid-pssa277>3.0.co;2-c

Google Scholar

[3] S. Asada, T. Okuda, T. Kimoto and J. Suda, Appl. Phys. Express 9 (2016) 041301.

Google Scholar

[4] A. Parisini and R. Nipoti, J. Appl. Phys. 114 (2013) 243703.

Google Scholar

[5] D.K. Schroder, Semiconductor Material and Device Characterization, third ed., John Wiley & Sons, New Jersey, (2006).

Google Scholar

[6] T. Kimoto and J.A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications, John Wiley & Sons, Singapore, (2014).

Google Scholar

[7] T. Kimoto, O. Takemura, H. Matsunami, T. Nakata and M. Inoue, J. Electron. Mater. 27 (1998) 358-364.

Google Scholar

[8] M. Lazar, C. Raynaud, D. Planson, J.-P. Chante, M.-L. Locatelli, L. Ottaviani and P. Godignon, J. Appl. Phys. 94 (2003) 2992-2998.

DOI: 10.1063/1.1598631

Google Scholar

[9] J. Wiley and G. Miller, IEEE T. Electron Dev. 22 (1975) 265-272.

Google Scholar

[10] A.M. Goodman, J. Appl. Phys. 34 (1963) 329-338.

Google Scholar

[11] K. Lehovec, Appl. Phys. Lett. 26 (1975) 82-84.

Google Scholar

[12] C. Darmody and N. Goldsman, J. Appl. Phys. 126 (2019) 145701.

Google Scholar

[13] J. Weiße, M. Hauck, T. Sledziewski, M. Krieger, A.J. Bauer, H. Mitlehner, L. Frey and T. Erlbacher, Materials Science Forum 963 (2019) 433-436.

DOI: 10.4028/www.scientific.net/msf.963.433

Google Scholar