Liquid Si-Induced 4H-SiC Surface Structuring Using a Sandwich Configuration

Article Preview

Abstract:

In view of obtaining a step bunched morphology on large 4H-SiC surfaces, a sandwich configuration is investigated. A piece of silicon is melted between two 4H-SiC 4° off wafers, allowing a better spreading of the liquid than a Si drop approach. This successfully leads to highly step-bunched surfaces, though with irregular steps. The most regular step and terrace stuctures were found to be the result of epitaxial growth via a dissolution-precipitation process occuring from the edges to the center of the wafers. This is probably caused by radio-frequency induced electromagnetic convection within liquid Si. This process is quenched when using smaller liquid thickness.

You have full access to the following eBook

Info:

Periodical:

Materials Science Forum (Volume 1062)

Pages:

8-12

Citation:

Online since:

May 2022

Export:

Share:

Citation:

* - Corresponding Author

[1] A. Chatterjee, A. Bhat, K. Matocha, Investigation of electrically active defects of silicon carbide using atomistic scale modeling and simulation, Phys. B Condens. Matter, 401–402, (2007), 81–84.

DOI: 10.1016/j.physb.2007.08.118

Google Scholar

[2] J. Woerle, B. C. Johnson, C. Bongiorno, K. Yamasue, G. Ferro, D. Dutta, T. A. Jung, H. Sigg, Y. Cho, U. Grossner and M. Camarda, Two-dimensional defect mapping of the SiO2/4H−SiC interface, Phys. Rev. Mater., 3, 8, (2019), 084602.

DOI: 10.1103/physrevmaterials.3.084602

Google Scholar

[3] T. Kimoto, Z. Y. Chen, S. Tamura, S. I. Nakamura, N. Onojima and H. Matsunami, Surface morphological structures of 4H-, 6H- and 15R-SiC (0001) epitaxial layers grown by chemical vapor deposition, Jpn. J. Appl. Phys., 40, 5R, (2001), 3315–3319.

DOI: 10.1143/jjap.40.3315

Google Scholar

[4] P. Fiorenza, F. Iucolano, G. Nicotra, C. Bongiorno, I. Deretzis, A. La Magna, F. Giannazzo, M. Saggio, C. Spinella, F. Roccaforte, Electron trapping at SiO2/4H-SiC interface probed by transient capacitance measurements and atomic resolution chemical analysis, Nanotechnology 29 (2018) 395702.

DOI: 10.1088/1361-6528/aad129

Google Scholar

[5] M. Camarda, J. Woerle, V. Souliere, G. Ferro, H. Sigg, U. Grossner and J. Gobrecht, Analysis of 4H-SiC MOS Capacitors on macro-stepped surfaces, Mater. Sci. Forum, 897, (2017), 107–110.

DOI: 10.4028/www.scientific.net/msf.897.107

Google Scholar

[6] D. Chaussende, L. Parent-Bert, Y. J. Shin, T. Ouisse and T. Yoshikawa, Effect of aluminum during the high temperature solution growth of Si-face 4H-SiC, Mater. Sci. Forum, 858, (2016), 37–40.

DOI: 10.4028/www.scientific.net/msf.858.37

Google Scholar

[7] V. Soulière, D. Carole, M. Camarda, J. Woerle, U. Grossner, O. Dezellus and G. Ferro, 4H-SiC(0001) surface faceting during interaction with liquid Si, Mater. Sci. Forum, 858, (2016), 163–166.

DOI: 10.4028/www.scientific.net/msf.858.163

Google Scholar

[8] U. Burr and U. Müller, Rayleigh-Bénard convection in liquid metal layers under the influence of a horizontal magnetic field, J. Fluid Mech., 453, (2002), 345–369.

DOI: 10.1017/s002211200100698x

Google Scholar

[9] Y. Tasaka, T. Yanagisawa, K. Fujita, T. Miyagoshi and A. Sakuraba, 2D oscillation of convection roll in a finite liquid metal layer under a horizontal magnetic field, J. Fluid Mech., 911, (2021), 1–24.

DOI: 10.1017/jfm.2020.1047

Google Scholar

[10] F. Mercier, J.-M. Dedulle, D. Chaussende and M. Pons, Coupled heat transfer and fluid dynamics modeling of high-temperature SiC solution growth, J. Crystal Growth 312 (2010) 155–163.

DOI: 10.1016/j.jcrysgro.2009.10.007

Google Scholar