# Optimum Design of a SiC Schottky Barrier Diode Considering Reverse Leakage Current due to a Tunneling Process

## Info:

Periodical:

Materials Science Forum (Volumes 433-436)

Main Theme:

Edited by:

Peder Bergman and Erik Janzén

Pages:

831-834

Citation:

T. Hatakeyama et al., "Optimum Design of a SiC Schottky Barrier Diode Considering Reverse Leakage Current due to a Tunneling Process", Materials Science Forum, Vols. 433-436, pp. 831-834, 2003

Online since:

September 2003

Export:

Price:

\$38.00

Permissions:

[1] J. Crofton and S. Sriram, IEEE tans. Elec. Dev. Vol 43 (1996), p.2305.

[2] M. Treu, R. Rupp, H. Kapels and W. Bartsch, Mat. Sci. Forum Vol. 353-356 (2001), p.679.

[3] F. A. Padvani and R. Stratton, Solid-State Electronics Vol 9 (1966), p.695.

[3] T. Hatakeyama and T. Shinohe, Mat. Sci. Forum, Vol 389-393 (2002), p.1169 Corresponding author: tetsuo2. hatakeyama@toshiba. co. jp, Phone: +81-44-549-2142, Fax: +81-44-520-1501.

0. 5.

[1] 1. 5.

[2] 0. 6 0. 8 1 1. 2 1. 4 1. 6 On State Voltage (V) Schottky Barrier Height (eV) Vmax=600V Vmax=2000V 300K 423K JF=200A/cm.

[2] JLEAK=10mA/cm.

[2] @300K Figure 4: Maximum field as a function of the SBH, considering the specification of a leakage current density of 1mA/cm 2, 10mA/cm 2, and 100 mA/cm.

[2] Figure 5: On-state voltage as a function of the SBH, considering the specification of a leakage current density of Jleak=10mA/cm.

[2] [0] 0. 5.

[1] 1. 5.

[2] 2. 5 0. 6 0. 8 1 1. 2 1. 4 1. 6 Jleak=1mA/cm.

[2] Jleak=10mA/cm.

[2] Jleak=100mA/cm.

[2] SiC EBD Maximum Electric Field (MV/cm) Schottky Barrier Height(eV) T=300K.