Progress and Limits of the Numerical Simulation of SiC Bulk and Epitaxy Growth Processes

Article Preview

Abstract:

Modeling and simulation of the SiC growth process is sufficiently mature to be used as a training tool for engineers as well as a decision making tool, e.g. when building new process equipment or up-scaling old ones. It is possible to simulate accurately temperature and deposition distributions, as well as doping. The key of success would be the combined use of simulation, experiments and characterization in a "daily interaction". The main limitation in SiC growth modeling is the accurate knowledge of physical, thermal, radiative, chemical and electrical data for the different components of the reactor. This is the weakest link in developing completely predictive models. In addition, the link between the thermochemical history of the grown material and its structure and defects still needs further development and input of experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 483-485)

Pages:

3-8

Citation:

Online since:

May 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. McD. Hobgood, M.F. Brady, M.R. Calus, J.R. Jeny, R.T. Leonard, D.P. Malta, St.G. Mueller, A.R. Powell, V.F. Tsvetkov, R.C. Glass, C.H. Carter: Mater. Sci. Forum Vol. 457-460 (2004), p.3.

DOI: 10.4028/www.scientific.net/msf.457-460.3

Google Scholar

[2] A. Ellison, B. Magnusson, B. Sundqvist, G. Pozina, J. P Bergman, E. Janzen: Mater. Sci. Forum Vol. 457-460 (2004), p.9.

Google Scholar

[3] T.L. Straubinger, M. Bikermann, R. Weingärtner, P.J. Wellmann, A. Winnacker: J. Crystal Growth Vol. 240 (2002) p.117.

Google Scholar

[4] D. Chaussende, F. Baillet, L. Charpentier, E. Pernot, M. Pons, R. Madar: J. Electrochem. Soc Vol. 150 (2003) p. G653.

DOI: 10.1149/1.1606689

Google Scholar

[5] M. Pons, R. Madar, Th. Billon: Recent Major Advances in Silicon Carbide, (eds. G. Pensl, H. Matsunami, B. Choyke, Springer Verlag, 2003) p.121.

Google Scholar

[6] M. Pons, F. Baillet, E. Blanquet, E. Pernot, R. Madar, D. Chaussende, M. Mermoux, L. Di Cioccio, P. Ferret, G. Feuillet, C. Faure, Th. Billon: : Appl. Surf. Sci. Vol. 212-213 (2003) p.177.

DOI: 10.1016/s0169-4332(03)00064-3

Google Scholar

[7] R.H. Ma, H. Zhang, S. Ha, M. Skowronki: J. Crystal Growth Vol. 252 (2003) p.523.

Google Scholar

[8] M. Selder, L. Kadinski, F. Durst, T. Straubinger, P. Wellmann, D. Hofmann: Mat. Sci. Forum, Vol. 353-356 (2001) p.65.

DOI: 10.4028/www.scientific.net/msf.353-356.65

Google Scholar

[9] A. Schöner: Recent Major Advances in Silicon Carbide, (eds. G. Pensl, H. Matsunami, B. Choyke, Springer Verlag, 2003) p.229.

Google Scholar

[10] A. N. Vorobe'v, S. Yu. Karpov, M. V. Bogdanov, A. E. Komissarov, O. V. Bord, A. I. Zhmakin, YU. N. Makarov: Comp. Mat. Sci. Vol. 24 (2002) p.520.

Google Scholar

[11] J. Meziere, M. Ucar, E. Blanquet, M. Pons, P. Ferret, L. Di Cioccio: J. Crystal Growth Vol 267 (2004) p.436.

DOI: 10.1016/j.jcrysgro.2004.04.038

Google Scholar

[13] Ö. Danielsson, A. Henry, E. Janzen: J. Crystal Growth Vol. 243 (2002) p.170.

Google Scholar

[12] Ö. Danielsson, U. Fosberg, A. Henry, E. Janzen: J Crystal Growth Vol. 235 (2002) p.352.

Google Scholar

[14] Ö. Danielsson, U. Forsberg, E. Janzen : J. Crystal Growth: Vol. 250 (2003). p.47.

Google Scholar