Aluminium Alloys 2006 - ICAA10

Volumes 519-521

doi: 10.4028/

Paper Title Page

Authors: Shin Yamamoto, Hiroyuki Toda, L. Qian, Tomomi Ohgaki, Masakazu Kobayashi, Toshiro Kobayashi, Kentaro Uesugi
Abstract: High resolution phase contrast imaging technique has been applied to obtain clear crack images together with the detailed of microstructural features in a cast aluminum alloy. Crack opening/closure, crack extension and damage evolution in the vicinity of a crack-tip is observed three-dimensionally (3-D). 3-D image analysis is performed to evaluate void initiation and growth near the crack-tip. The information on physical displacement of each microstructural feature is provided for analyzing local crack driving forces at crack front. This technique has been identified to provide a unique possibility to quantitatively interpret the 3-D cracking behavior in bulk materials.
Authors: O. Orlov, Éric Maire, Jérôme Adrien, Michael J. Worswick, David J. Lloyd
Abstract: A three-dimensional damage percolation model, which captures the effect of microstructural heterogeneity on damage evolution, has been developed to model damage initiation and propagation in materials containing second phase particles. It considers the three phenomena preceding ductile rupture of the material: void nucleation, growth, and coalescence. Threedimensional X-ray tomography is used to obtain measured three-dimensional second phase particle distributions in aluminum alloy sheet. Material damage evolution is studied within a tensile test simulation and compared to measured damage from an in situ tensile test utilizing X-ray tomography. Experimental and simulation results for material damage initiation and evolution are in good agreement.
Authors: R.T. Shuey, Murat Tiryakioğlu, Gary H. Bray, James T. Staley
Abstract: We discuss data from a range of heat-treatable aluminum alloys, showing both yield strength and fracture toughness vs time at temperature of interrupted quench. Drop in toughness occurs at much shorter hold time than drop in strength. Concurrently the fracture becomes more intergranular. When later the yield strength falls, fracture becomes more transgranular, and toughness may rise. We attribute this pattern to two mechanisms: 1) Early quench precipitates nucleated on grain and/or subgrain boundaries grow to size sufficient to initiate fracture under tension, long before they withdraw significant solute from subsequent age-hardening. 2) Later quench precipitates nucleated on dispersoids and/or dislocations withdraw solute relatively uniformly, reducing matrix yield strength while increasing matrix ductility. We propose that quantitative modeling of change in strength and toughness with change in quench, requires multiple C-curves for multiple types of quench precipitates, and nonlinear relation of toughness to amount of boundary quench precipitate.
Authors: T.F. Morgeneyer, Marco J. Starink, I. Sinclair
Abstract: Analysis of toughness in 6156 Al-Mg-Si-Cu sheet has been performed using enhanced Kahn tear tests on samples quenched at different rates, whilst microstructures of the samples have been assessed using differential scanning calorimetry, scanning electron microscopy and transmission electron microscopy. Crack initiation energies were unaffected by changing water quench temperature from 20°C to 60°C, however a significant reduction was evident on air cooling. Crack propagation resistance was reduced for both 60°C water quenched and air cooled materials. The failure morphology of the air cooled material appears consistent with classical intergranular ductile failure. Coarse voiding and shear decohesion was prevalent in the 20°C water quenched material, whilst the 60°C water quenched material showed a mixture of transgranular and intergranular fracture modes. Changes in microstructure and precipitation behaviour resulting from reduced quenching rate were identified and related to the observed fracture behaviour, particularly in terms of precipitate free zone formation and the simultaneous presence of coarse particles at grain boundaries.
Authors: Christopher R. Hutchinson, P. Cornall, M. Gouné
Abstract: It has recently been observed that the creep resistance of Al-Cu based precipitation hardened alloys may be enhanced through use of the underaged temper. We have treated this problem theoretically by considering the motion of a dislocation through a precipitation hardened structure and discuss the physical origin of the enhanced creep resistance in the underaged condition. The variation in expected creep resistance as a function of aging treatment is calculated and the possible generality of the experimental observations is considered.
Authors: Richard A. Karnesky, David N. Seidman, David C. Dunand
Abstract: Cast and aged Al-Sc microalloys are creep-resistant to 300‰, due to the blocking of dislocations by nanosize, coherent Al3Sc (L12) precipitates. Rare-earth elements substitute for Sc in these precipitates, leading to a higher number density of smaller precipitates, which have a greater lattice-parameter mismatch with Al than in the Al-Sc binary microalloy. This leads to an improvement in both ambient temperature microhardness and high temperature creep. Creep threshold stresses of Al-Sc-RE (RE = Y, Dy, or Er) at 300‰ are higher than for Al-Sc and Al-Sc-M (M = Mg, Ti, or Zr) microalloys. This is in agreement with a dislocation climb model that includes the elastic stress fields of the precipitates.
Authors: Brian Wilshire, H. Burt, N.P. Lavery
Abstract: The standard power law approaches widely used to describe creep and creep fracture behavior have not led to theories capable of predicting long-term data. Similarly, traditional parametric methods for property rationalization also have limited predictive capabilities. In contrast, quantifying the shapes of short-term creep curves using the q methodology introduces several physically-meaningful procedures for creep data rationalization and prediction, which allow straightforward estimation of the 100,000 hour stress rupture values for the aluminum alloy, 2124.
Authors: Mohammad Jaffar Hadianfard, Michael J. Worswick
Abstract: The effect of strain rate in the range of 10-4 to 10-1 s-1 on localization of deformation and fracture behavior of 5754 and 5182 aluminum alloys is investigated. For this study, tensile tests, interrupted tensile tests, shear band decoration, fractography and image analysis has been used. This investigation is based on experimental work and observation of the material behavior. Results show that strain rate has some effect on the mechanical properties and deformation stability of the alloys. The area of localized plastic deformation and thickness of the shear bands were found to be sensitive to the strain rate. It was also observed that localization of plastic deformation and shear band formation is an important step in the damage propagation and final fracture of the alloys. Detail of damage development, based upon micrographs of samples interrupted at different stages of straining is presented
Authors: Keitaro Horikawa, Hidetoshi Kobayashi
Abstract: Hydrogen accumulation during fatigue of bake-hardened Al-Mg-Si alloys was investigated by means of hydrogen microprint technique. As a result of S-N curve relation as a function of testing frequency, effect of environmental hydrogen on fatigue properties was not clearly identified. Based on the low cycle fatigue test with 60MPa stress amplitude, it was revealed that hydrogen was preferentially accumulated on slip lines and that distribution of hydrogen emission was changed in the crack propagation direction. Hydrogen was preferentially accumulated at the coarse slip lines near the fatigue cracks where the separation of slip planes was observed in the fracture surface. On the other hand, hydrogen was observed on the slip lines arranged like steps where the fatigue striations were formed in the fracture surface. At near the final fracture area where the finer slip lines were formed on specimen surface, hydrogen was arranged on each slip lines formed by multiple slips. Morphology of hydrogen accumulation on slip lines was not changed when the testing frequency was changed from 2Hz to 15Hz.
Authors: P. Juijerm, I. Altenberger, Berthold Scholtes
Abstract: The precipitation-hardened aluminium wrought alloy AA6110-T6 (Al-Mg-Si-Cu) was mechanically surface treated (deep rolled) at room temperature. The cyclic deformation behavior and s/n-curves of deep rolled AA6110-T6 have been investigated by stress-controlled fatigue tests at room and elevated temperatures up to 250°C and compared to the polished condition as a reference. The effect of deep rolling on fatigue lifetime under high-loading and/or elevatedtemperature conditions will be discussed. The stability of near-surface residual stresses as well as work-hardening states (FWHM-values) was investigated by X-ray diffraction methods. Residual stress- and FWHM-depth-profiles before and after fatigue tests at elevated temperature are presented. It was found that the investigated AA6110-T6 aluminium alloy shows cyclic softening during stress controlled fatigue tests at room and elevated temperatures. Below a certain stress amplitude at a given temperature, deep rolling can enhance the fatigue lifetime of AA6110-T6 as compared to the untreated state through cyclically stable near-surface work hardening as indicated by stable FWHM values. From the s/n data of deep rolled and polished AA6110-T6, an effective boundary line for the deep rolling treatment in a stress amplitude-temperature diagram can be established.

Showing 161 to 170 of 308 Paper Titles