400 Watt Boost Converter Utilizing Silicon Carbide Power Devices and Operating at 200°C Baseplate Temperature

Abstract:

Article Preview

This paper reports on a 400 watt boost converter using a SiC BJT and a SiC MOSFET as the switch and a 6 Amp and a 50 Amp SiC Schottky diode as the output rectifier. The converter was operated at 100 kHz with an input voltage of 200 volts DC and an output voltage of 400 volts DC. The efficiency was tested with an output loaded from 50 watts to 400 watts at baseplate temperatures of 25°C, 100°C, 150°C and 200°C. The results show the converter in all cases capable of operating at temperatures beyond the range possible with silicon power devices. While the converter efficiency was excellent in all cases, the SiC MOSFET and 6 Amp Schottky diode had the highest efficiency. Since the losses in a boost converter are dominated by the switching losses and the switching losses of the SiC devices are unaffected by temperature, the efficiency of the converter was effectively unchanged as a function of temperature.

Info:

Periodical:

Materials Science Forum (Volumes 527-529)

Edited by:

Robert P. Devaty, David J. Larkin and Stephen E. Saddow

Pages:

1445-1448

Citation:

J. Richmond et al., "400 Watt Boost Converter Utilizing Silicon Carbide Power Devices and Operating at 200°C Baseplate Temperature", Materials Science Forum, Vols. 527-529, pp. 1445-1448, 2006

Online since:

October 2006

Export:

Price:

$38.00

[1] Jim Richmond, Sei-Hyung Ryu, Mrinal Das, Sumi Krishnaswami, Brett Hull, Anant Agarwal, John Palmour, Wesley Tipton, Bruce Geil, Aivars Lelis and Charles Scozzie: Silicon Carbide Diodes and Switches: Revolutionary Power Devices for the AECV, 6th International All Electric Combat Vehicle Conference, Bath UK, June (2005).

DOI: https://doi.org/10.1109/drc.2006.305164

[2] Jim Richmond, Ranbir Singh, Anant Agarwal, John Palmour: Application of SiC Schottky Diodes for Increased Power Converter Efficiency, Proceedings of the 5th International All Electric Combat Vehicle (AECV) Conference, Angers, France, June 2 - 5, (2003).

[3] Jim Richmond, Sei-Hyung Ryu, Mrinal Das, Sumi Krishnaswami, Stuart Hodge Jr., Anant Agarwal, John Palmour: An Overview of Cree Silicon Carbide Power Devices, IEEE Workshop on Power Electronics in Transportaion (WPET), Detroit, (2004).

DOI: https://doi.org/10.1557/proc-815-j1.1

[4] Jim Richmond, Stuart Hodge and John Palmour: Silicon Carbide Power Applications and Device Roadmap, Power Electronics Europe. Issue 7, p.17, (2004).

[5] http: /www. cree. com/ftp/pub/CSD06060. pdf.