Improved Dielectric and Interface Properties of 4H-SiC MOS Structures Processed by Oxide Deposition and N2O Annealing

Abstract:

Article Preview

Oxide deposition followed by high-temperature annealing in N2O has been investigated to improve the quality of 4H-SiC MOS structures. Annealing of deposited oxides in N2O at 1300oC significantly enhances the breakdown strength and decreases the interface state density to 3x1011 cm-2eV-1 at EC – 0.2 eV. As a result, high channel mobility of 34 cm2/Vs and 52 cm2/Vs has been attained for inversion-type MOSFETs fabricated on 4H-SiC(0001)Si and (000-1)C faces, respectively. The channel mobility shows a maximum when the increase of oxide thickness during N2O annealing is approximately 5 nm. A lateral RESURF MOSFET with gate oxides formed by the proposed process has blocked 1450 V and showed a low on-resistance of 75 mcm2, which is one of the best performances among lateral SiC MOSFETs reported.

Info:

Periodical:

Materials Science Forum (Volumes 527-529)

Edited by:

Robert P. Devaty, David J. Larkin and Stephen E. Saddow

Pages:

987-990

Citation:

T. Kimoto et al., "Improved Dielectric and Interface Properties of 4H-SiC MOS Structures Processed by Oxide Deposition and N2O Annealing", Materials Science Forum, Vols. 527-529, pp. 987-990, 2006

Online since:

October 2006

Export:

Price:

$38.00

[1] G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, R. Chanana, R.A. Weller, S.T. Pantelides, L.C. Feldman, O.W. Holland, M.K. Das and J.W. Palmour: IEEE Electron Device Lett. Vol. 22 (2001), p.176.

DOI: https://doi.org/10.1109/55.915604

[2] S. Dimitrijev, H.F. Li, H.B. Harrison, D. Sweatman: IEEE Trans. Electron Dev. Lett. Vol. 18 (1997), p.175.

[3] C.Y. Lu, J.A. Cooper, Jr., T. Tsuji, G. Chung, J.R. Williams, K. McDonald, and L.C. Feldman: IEEE Trans. Electron Devices, Vol. 50 (2003), p.1582.

[4] T. Kimoto, Y. Kanzaki, M. Noborio, and H. Matsunami: Jpn. J. Appl. Phys. Vol. 44 (2005), p.1213.

[5] K.C. Chang, N.T. Nuhfer, L.M. Porter, and Q. Wahab: Appl. Phys. Lett. Vol. 77 (2000), p.2186.

[6] V.V. Afanas'ev, F. Ciobanu, G. Pensl, and A. Stesmans: Silicon Carbide- Recent Major Advances, W.J. Choyke, H. Matsunami, and G. Pensl, Eds. Springer, Berlin (2003), p.343.

[7] G.Y. Chung, J.R. Williams, T. Isaacs-Smith, F. Ren, K. McDonald, and L.C. Feldman: Appl. Phys. Lett. Vol. 81 (2002), p.4266.

[8] L.A. Lipkin, M.K. Das and J.W. Palmour: Mater. Sci. Forum Vols. 389-393 (2002), p.985.

[9] H. Yano, T. Hatayama, Y. Uraoka, and T. Fuyuki: Mat. Sci. Forum Vols. 483-485 (2005), p.685.

[10] W. Wang, S. Banerjee, T.P. Chow and R.J. Gutmann: IEEE Electron Device Lett. Vol. 25 (2004), p.185.

[11] T. Kimoto, H. Kosugi, J. Suda, Y. Kanzaki, and H. Matsunami: IEEE Trans. Electron Devices Vol. 52 (2005), p.112.

[12] S. Tanimoto, H. Tanaka, T. Hayashi, Y. Shimoida, M. Hoshi, and T. Mihara: Mat. Sci. Forum Vols. 483-485 (2005), p.677.

DOI: https://doi.org/10.4028/www.scientific.net/msf.483-485.677

[13] N.S. Saks: Silicon Carbide- Recent Major Advances, W.J. Choyke, H. Matsunami, and G. Pensl, Eds. Springer, Berlin (2003), p.387.

Fetching data from Crossref.
This may take some time to load.