Low-Temperature Post-Oxidation Annealing Using Atomic Hydrogen Radicals Generated by High-Temperature Catalyzer for Improvement in Reliability of Thermal Oxides on 4H-SiC

Abstract:

Article Preview

Low-temperature post-oxidation annealing (POA) process of high-reliability thermal oxides grown on 4H-SiC using new apparatus that generates atomic hydrogen radicals by high-temperature catalyzer has been investigated. Atomic hydrogen radicals were generated by thermal decomposition of H2 gas at the catalyzer surface heated at high temperature of 1800°C, and then exposed to the sample at 500°C in reactor pressure of 20 Pa. The mode and maximum values of field-to-breakdown are 11.0 and 11.2 MV/cm, respectively, for the atomic hydrogen radical exposed sample. In addition, the charge-to-breakdown at 63% cumulative failure of the thermal oxides for atomic hydrogen radical exposed sample was 0.51 C/cm2, which was higher than that annealed at 800°C in hydrogen atmosphere (0.39 C/cm2). Consequently, the atomic hydrogen radical exposure at 500°C has remarkably improved the reliability of thermal oxides on 4H-SiC wafer, and is the same effect with high-temperature hydrogen POA at 800°C.

Info:

Periodical:

Materials Science Forum (Volumes 527-529)

Edited by:

Robert P. Devaty, David J. Larkin and Stephen E. Saddow

Pages:

999-1002

Citation:

J. Senzaki et al., "Low-Temperature Post-Oxidation Annealing Using Atomic Hydrogen Radicals Generated by High-Temperature Catalyzer for Improvement in Reliability of Thermal Oxides on 4H-SiC", Materials Science Forum, Vols. 527-529, pp. 999-1002, 2006

Online since:

October 2006

Export:

Price:

$38.00

[1] L. A. Lipkin and J. W. Palmour: J Electric Mater. Vol. 25 (1996), p.909.

[2] H. F. Li, S. Dimitrijev, H.B. Harrison and D. Sweatman: Appl. Phys. Lett. Vol. 90 (1997), p. (2028).

[3] G. Chung, C. C. Tin, J. R. Williams, K. McDonald, M. D. Ventra, R. K. Chanana, S. T. Pantelides, L. C. Feldman and R. A. Weller: Appl. Phys. Lett. Vol. 77 (2000), p.3601.

[4] R. Kosugi, S. Suzuki, M. Okamoto, S. Harada, J. Snezaki and K. Fukuda: IEEE Electron Device Lett. Vol. 23 (2002), p.136.

[5] V. V. Afanas'ev, A. Stesmans, F. Ciobanu, G. Pensl, K. Y. Cheong and S. Dimitrijev: Appl. Phys. Lett. Vol. 82 (2003), p.568.

[6] J. Senzaki, K. Kojima, S. Harada, R. Kosugi, T. Suzuki and K. Fukuda: IEEE Electron Device Lett. Vol. 23 (2002), p.13.

[7] K. Fukuda, M. Kato, K. Kojima and J. Senzaki: Appl. Phys. Lett. Vol. 84 (2004), p. (2088).

[8] H. Zhang, A. Kumagai, G. Xu and K. Ishibashi: Jpn. J. Appl. Phys. Vol. 42 (2003), p.6252.

[9] M. Lenzlinger and E.H. Snow: J. Appl. Phys. Vol. 40 (1969), p.278.

[10] P. Friedrichs, E.P. Burte and R. Schörner: Appl. Phys. Lett. Vol. 65 (1994), p.1665.

Fetching data from Crossref.
This may take some time to load.