Influence of Surface Roughness on Breakdown Voltage of 4H-SiC SBD with FLR Structure

Abstract:

Article Preview

The Ti/4H-SiC Schottky barrier diodes with a field limiting ring (FLR) structure are fabricated. Two types of SBDs are prepared; one (SBD-A) is covered and another (SBD-B) isn’t covered with a carbon cap during high temperature annealing after ion implantation. The breakdown voltage at room temperature for SBD-A and SBD-B are 1400 V and 1000 V, respectively. The breakdown for both SBDs occurs due to an avalanche breakdown. The light emission images are obtained at the breakdown voltage by photo emission microscope (PEM). The light emission is observed along an FLR of the SBD-A as designed. On the other hand, the spot of light emission is observed on a FLR structure of the SBD-B. This light emission spot indicates that leakage current is concentrated because an electrical field concentration is generated at this one for the SBD-B. The root-mean-square roughness of the Al-implanted region on the FLR structure calculated from the atomic force microscopy (AFM) images for the SBD-A and the SBD-B are 0.697 nm and 5.58 nm, respectively. Therefore it is considered that large surface roughness on the FLR decreases breakdown voltage of SBD because an electrical field concentration is generated at a spot.

Info:

Periodical:

Materials Science Forum (Volumes 615-617)

Edited by:

Amador Pérez-Tomás, Philippe Godignon, Miquel Vellvehí and Pierre Brosselard

Pages:

643-646

DOI:

10.4028/www.scientific.net/MSF.615-617.643

Citation:

A. Kinoshita et al., "Influence of Surface Roughness on Breakdown Voltage of 4H-SiC SBD with FLR Structure", Materials Science Forum, Vols. 615-617, pp. 643-646, 2009

Online since:

March 2009

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.