Materials Science Forum
Vols. 645-648
Vols. 645-648
Materials Science Forum
Vol. 644
Vol. 644
Materials Science Forum
Vol. 643
Vol. 643
Materials Science Forum
Vols. 638-642
Vols. 638-642
Materials Science Forum
Vols. 636-637
Vols. 636-637
Materials Science Forum
Vol. 635
Vol. 635
Materials Science Forum
Vols. 633-634
Vols. 633-634
Materials Science Forum
Vols. 631-632
Vols. 631-632
Materials Science Forum
Vol. 630
Vol. 630
Materials Science Forum
Vols. 628-629
Vols. 628-629
Materials Science Forum
Vols. 626-627
Vols. 626-627
Materials Science Forum
Vol. 625
Vol. 625
Materials Science Forum
Vol. 624
Vol. 624
Materials Science Forum Vols. 633-634
Paper Title Page
Abstract: Depending on the loading conditions, geometry and material characteristics, the ductility of thin metallic films is controlled either by the resistance to plastic localization or by the resistance to internal damage. New on-chip tensile tests performed on submicron aluminium films show significant strain hardening capacity leading to relatively good resistance to necking, while damage occurs through void nucleation at grain boundaries followed by their growth and coalescence. These results are discussed in the light of several other studies presented in the recent literature in order to unravel the origins of the frequently reported poor ductility of thin metallic films, and the various means existing to improve it.
615
Abstract: Deformation and fracture behaviors of Cu/Au and Cu/Cr multilayered composites with different length scales were investigated by using instrumented-indentation and three-point-bending methods. It is found that with decreasing the length scale (layer thickness and grain size), both multilayers tend to produce plastic instability via localized shear banding under indentation load in spite of high hardness they have, while quasi-brittle fracture under relatively low fracture stress prevails at three-point-bending test. Especially, the compressive flow stress and the tensile fracture stress exhibit inverse trend of variation with the length scales, which implies different mechanisms. Such length scale dependent deformation and plasticity were analyzed concerning size and interface effects under different stress state.
637
Abstract: In recent years, the high strength of nanomaterials has gathered much interest in the materials community. Nanomaterials (polycrystalline and composites) have already been used, largely by the semiconductor community, as critical length scales for chip design have decreased to tens of nanometers. However, to ensure reliability of nanomaterials, the mechanisms underlying their structural integrity must be well understood. For these materials to be put into service, not only should their strength be considered, but also ductility, toughness, formability, and fatigue resistance. While some progress has been made into constructing models for the deformation mechanisms governing these behaviors, the body of experimental knowledge is still limited, especially for length scales below 10 nanometers. The results described here show stress-strain curves for nanolaminate composites with individual layer thickness of 40 nm and 5 nm. Nanolaminate composites fabricated via magnetron sputtering comprised of alternating 5 nm thick Cu and Nb multilayers (two relatively soft metals) exhibit strengths on par with hardened tool steel and deformability in compression in excess of 25% [1]. The deformability of nanoscale composites is found to be limited by the onset of geometric instability.
647
Abstract: Nanostructured materials and bulk metallic glasses are relatively new classes of engineering materials that have promise for unique metals applications. However, both these materials suffer from limited room temperature ductility in unconfined loading geometries. In this work, we present three experimental rules that we have observed to be necessary to toughen bulk metallic glasses. We reason that adaptations to these rules may provide the solution for toughening nanostructured composites and other brittle materials.
657
Abstract: The work hardening ability under room temperature compression of ductile Cu47.5Zr47.5Al5 and Cu47Ti33Zr11Ni8Si1 bulk metallic glass-forming alloys has been studied and compared. Both alloys exhibit high fracture strength, distinct work hardening and large plastic strain. Systematic investigations on the microstructural evolution reveal the occurrence of nano-scale heterogeneities, of both structural and chemical nature, which enables multiplication, branching, and restriction of the shear bands, thus controlling the plastic instability of metallic glasses. Phase separation in the liquid state leading to chemical inhomogeneities has been revealed for as-cast Cu47.5Zr47.5Al5 samples. In the case of Cu47Ti33Zr11Ni8Si1, a composite-type microstructure with in-situ formed nano-scale precipitates embedded in a glassy matrix is responsible for the distinct work hardening recorded on the stress-strain curves. The present results support the important role of nano-scale heterogeneities for promoting efficient work hardening in Cu-based metallic glass composites.
665
Abstract: The microstructures and mechanical behavior of the as-cast and isothermally annealed Zr63Al9.7Ni9.7Cu14.6Nb3 bulk metallic glasses (BMGs) were studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), and room temperature uniaxial compression. The as-cast BMG alloy shows a wide undercooled liquid span of 73 K at a constant heating rate of 40 K/min. Composite microstructures containing nanometer scaled icosahedral quasicrystals (i-phase) were produced upon annealing at 705 K. Under uniaxial room-temperature compression at a strain rate of 510-4 s-1, the as-cast BMG alloy exhibits a elastic deformation εy ~ 1.95%, a yield stress σy ~ 1650 MPa, and a Young’s modulus E ~ 84.5 GPa. The alloy shows a plastic strain εp ~ 8.0 % in a serrated plastic deformation process. Annealing induced embrittlement was observed in the relaxed BMG alloys. Comparing with the as-cast alloy, the relaxed and the composite alloys show negligible changes in elastic strain and Young’s modulus. The partially crystallized alloys are macroscopically brittle. Well developed vein patterns were observed in the fracture surfaces of all these alloys. The present work revealed that the dispersion of nanometer scaled i-phase particles is not effective as a barrier against shear localization in these partially quasicrystallized alloys.
675
Abstract: A new Fe-based amorphous / nano metallic coating with a good combination of high microhardness and excellent erosion corrosion resistance was produced by high velocity oxygen fuel (HVOF). The coating microstructure, amorphous phase content and properties under different HVOF processes were evaluated. It was found that they are very sensitive to the powder feed rate, stand-off distance and oxygen flow. This high performance amorphous / nano metallic coating could be applied as a good alternative material in erosion and corrosion environments.
685
Abstract: Abnormal grain growth was simulated by phase field model in order to find ways of producing scattered a few enormous grains in a nano-structural single phase AZ31 alloy to improve its ductility. It is shown that the abnormal grain growth is controlled by the three keys factors of interface energy, strain restored energy and interface mobility. Therefore, the microstructure with scattered a few enormous grains in the nano-structural matrix can be achieved after an annealing treatment if there is a small group of specially orientated nano-size grains in the original nao-structure with local low grain boundary energy or local high strain energy or local high interface mobility. The morphology of abnormal grains is also examined as function of annealing time to optimize the microstructure.
697
Abstract: Recovery, recrystallisation and grain growth processes as well as the formation of a solid solution and the phase separation of a homogeneous material into a heterogeneous one are observed for Cu-Ag-Zr alloys heat-treated at different temperatures by means of mechanical, electrical and microstructural analyses. Heat treatments are shown to be an effective tool to enhance the strain to failure. If applied between several deformation steps the heat treatment causes an increase of both strain and strength limits.
707