Materials Science Forum
Vol. 651
Vol. 651
Materials Science Forum
Vol. 650
Vol. 650
Materials Science Forum
Vol. 649
Vol. 649
Materials Science Forum
Vols. 645-648
Vols. 645-648
Materials Science Forum
Vol. 644
Vol. 644
Materials Science Forum
Vol. 643
Vol. 643
Materials Science Forum
Vols. 638-642
Vols. 638-642
Materials Science Forum
Vols. 636-637
Vols. 636-637
Materials Science Forum
Vol. 635
Vol. 635
Materials Science Forum
Vols. 633-634
Vols. 633-634
Materials Science Forum
Vols. 631-632
Vols. 631-632
Materials Science Forum
Vol. 630
Vol. 630
Materials Science Forum
Vols. 628-629
Vols. 628-629
Materials Science Forum Vols. 638-642
Paper Title Page
Abstract: The electronic concept for hydrogen embrittlement (HE) of austenitic steels is developed based on the hydrogen-caused increase of the concentration of free (i.e. conduction) electrons. It is shown that, as consequence, the shear module locally decreases, which in turn leads to the decrease in the stress for activation of dislocation sources, the line tension of dislocations, the distance between the dislocations in pileups and, in consistency with the theory of hydrogen-enhanced localized plasticity (HELP), promotes the reversible hydrogen brittleness. The analysis of the electronic and elasticity approaches to HELP is carried out using the experimental data. The effect of alloying elements on the mechanical properties is studied and a concept for design of hydrogen-resistant austenitic steels is proposed.
104
Abstract: Recent decades have witnessed some remarkable advances in engineering steels driven by the need to respond to challenges posed, for example, by recovery and transmission of oil and gas, or enhanced vehicle safety and fuel economy. Foremost amongst these must surely be the extended application of carbon steels, achieved principally through ferrite grain refinement by the practice of microalloying coupled with controlled thermomechanical processing. Limitations to strengthening ferrite/pearlite structures further by grain refinement or precipitation, however, has focused attention back to acicular forms of microstructure. One of the most interesting advances in this area has been the development of bainitic steels, which have been almost dormant since the mid-20th century. This resurgence may partly be attributed to a better appreciation of the bainite transformation mechanism, and the experimental work for this which unexpectedly spawned some interesting bainitic microstructures which have seen further development and application. These are the so-called ‘carbide-free’ bainites, which employ alloying to replace carbides, principally cementite, with carbon-stabilized retained austenite. Particularly noteworthy has been the emergence of the transformation induced plasticity (TRIP) sheet steels with enhanced properties principally targeted for automotive use. It is worth mentioning also that a parallel development has produced similar microstructure in austempered ductile irons (ADI), another important ferrous alloy which has seen recent expanding interest in its application. Even more recently, as we proceed into the 21st century, the concept of employing steel microstructures containing carbon-enriched retained austenite, has been developed further by combining both alloying and novel heat treatment procedures to exchange ‘bainitic’ ferrite with ‘martensitic’ ferrite. Interestingly, this non-equilibrium ‘quenching and partitioning’ process route also offers the possibility to increase the retained austenite carbon concentration to very high levels, potentially revealing new and previously unobtainable properties.
110
Abstract: Carbide free bainite has achieved the highest strength and toughness combinations to date for bainitic steels in as-rolled conditions. By alloying designing and with the help of phase transformation theory, it was possible to improve simultaneously the strength and toughness because of the ultra-fine grain size of the bainitic ferrite plates. Ultimate tensile strengths ranging from 1600 MPa to 1800 MPa were achieved while keeping a total elongation higher than 10 %. Their toughness at room temperature matches tempered martensitic steels, known to be the best-in-class regarding this property. However, it has been observed that the presence of coalesced bainite leads to a dramatic deterioration in toughness in these novel high strength bainitic steels.
118
Abstract: Modern, cost-effective pipelines are moving beyond the API X70-X80 limits of the 1990s. Over the last few years, more interest has been placed on the X100-120 grades because they are potentially more economical to build and operate. To reach the impressive properties required by these new grades, the proper combination of alloy and rolling process design must be implemented, along with highly controlled interrupted accelerated cooling and hot leveling. This paper discusses some of the underlying physical metallurgy that is required and points out areas where further research and development would be useful.
124
Abstract: After discussion of general issues regarding University/Industry collaboration, some examples are described of how this impacts upon Corus (now part of Tata Steel), including roll friction, work-roll performance, and phase transformation including its detection on line. The deployment of the academic research invokes varying levels of associated industrial RD&T, whether through parallel projects or follow-up projects. Various modes are employed from PhD/EngD student projects through to collaborative consortia. By whatever model, effective collaboration between universities and industries clearly requires the removal of the boundary between the two.
130
Abstract: The body design with light weight and enhanced safety is a key issue in the car industry. Corresponding to this trend, POSCO is developing various automotive steel products with advanced performance. Conventional advanced high strength steels such as DP and TRIP steels are now expanding their application since the steels exhibit higher strength and ductility than those of conventional solution and precipitation strengthened high strength steels. Efforts have been made to enhance the mechanical performance of these steels such as ductility, hole expansion ratio, deep drawability, etc. Current research is focused on development of extra- and ultra-AHSS. Extra-AHSS are designed to utilize nano-scale retained austenite embedded in fine bainite and martensite. Ultra-AHSS are designed to have austenite as the major phase, and the ductility is enhanced primarily by continuous strain hardening generated during forming. These steels including extra- and ultra-AHSS are believed to be the next generation automotive steels which will replace the existing high strength steels due to their extremely high strength and ductility combinations.
136
Abstract: With the development of new steels and processing techniques, there have been corresponding advances in the fatigue performance of steels. Methods to increase fatigue performance are typically designed to produce gradients in surface properties and are based on heat treating operations, including enhanced carburizing and induction hardening, as well as surface mechanical deformation. In this paper selected examples based on recent work on deep rolling is used to illustrate the importance of the base steel properties on the final performance of surface modified materials. The degree of fatigue improvement by deep rolling, a process to mechanically deform fillet surfaces to improve fatigue resistance in cylindrical components, depends on the deformation response of the substrate to the rolling process. Recent results on the behavior of three medium carbon steel alloys deformed at temperatures up to 360 °C, are discussed. Deep rolling increased fatigue resistance, and the degree of improvement was higher when deep rolling was applied in the dynamic strain aging (DSA) temperature range rather than at room temperature. Observed variations in fatigue performance are interpreted based on fundamental deformation mechanisms and are used to present an overall perspective on approaches to increase the fatigue resistance of conventional and newly developed steels.
142
Abstract: The performance of multiphase steels with high strength and improved toughness or ductility, such as intercritically annealed dual-phase (DP) and transformation-induced plasticity (TRIP) steels, is of key importance to the automotive industry. In this work we have considered the entire manufacturing process and the effects of this on the final product performance. These steels are formed to produce the required final shape and then the car is paint baked. In this work we also consider the effect of cold working and bake hardening on the fatigue life of the components.
148
Abstract: The field of application of composites is ever-growing because of their unrivalled combinations of functional and structural properties. Such associations seem the more improvable as there are at once manifold possibilities to modify the architecture of composites, their route of elaboration, an ever-increasing scientific potency for both experimental investigations and modelling, and always more demanding materials performances in projects.
This presentation wants to illustrate all these aspects by the example of metal matrix composites (MMCs) mostly elaborated by severe plastic deformation. Emphasis is given to results dealing with the effects of composite design and conditions of metalworking on the success of the fabrication process that depends on the uniformity of deformation and/or on the quality of the interfaces. At last, the consequences of all these data, and the need of complementary work, for the continuous improvement of the properties MMCs are delineated.
154
Abstract: The exceptional high hardness of lath martensite in quenched Fe-C steels is explained by the Engel-Brewer valence electron theory for crystal structures. The theory predicts the transformation sequence FCC-HCP-BCC with FCC iron as Fe3v, HCP iron as Fe2v, BCC iron as Fe1v and carbon as C4v. Electronic compatibility requires transformation from FCC to HCP to form two separate components. Carbon-rich clusters of C4v with 8 Fe3v atoms are distributed uniformly in a carbon-free matrix of HCP Fe2v atoms. The carbon-iron clusters are viewed as particle-like, calculated as 0.63 nm in size, and is responsible for the high strength of martensite. The carbon-free region experiences shear deformation during FCC to HCP transformation leading to work hardened fine grains. Subsequent transformation to BCC iron maintains the same size carbon cluster with additional shearing deformation during HCP to BCC formation in the carbon-free region. Tempering studies of quenched martensite are shown to support the carbon-iron cluster model.
160