Stacking Faults around the Hetero-Interface Induced by 6H-SiC Polytype Transformation on 3C-SiC with Solution Growth

Article Preview

Abstract:

6H-SiC hetero-epitaxially grown on a (111) 3C-SiC was observed with TEM. High-density stacking faults were formed around the hetero-interface, and the density of stacking faults decreased with increasing distance from interface. On the other hand, when 3C-SiC was homo-epitaxially grown on a 3C-SiC, any stacking faults did not exist at the interface between the grown crystal and the seed crystal. Thus, the stacking faults formation started from the 6H/3C hetero-interface. Considering the lattice-mismatch strain between 3C-SiC and 6H-SiC, the strain energy is equivalent to the stacking fault energy of 6H-SiC. This similarity suggests that the stacking faults formation could be caused by the relaxation of the lattice-mismatch strain.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 645-648)

Pages:

363-366

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. S. Miao, S. Limpijumnong and W. R. L. Lambrecht: Appl. Phys. Lett. 79 (2001), p.4360.

Google Scholar

[2] G. Savini, M. I. Heggie and S. Oberg: Faraday Discuss 134 (2007), p.353.

Google Scholar

[3] M. Aoki, M. Miyazaki, T. Nishiguchi, H. Kinoshita and M. Yoshimoto: Mat. Sci. Forum 600-603 (2009), p.365.

Google Scholar

[4] G. Feng, J. Suda and T. Kimoto: Appl. Phys. Lett. 94 (2009), p.091910.

Google Scholar

[5] T. Ujihara, R. Maekawa, R. Tanaka, K. Sasaki, K. Kuroda and Y. Takeda: J. Crystal Growth 310 (2008), p.143.

Google Scholar

[6] K. Seki, R. Tanaka, T. Ujihara and Y. Takeda: Mat. Sci. Forum 615-617 (2009), p.27.

Google Scholar

[7] W. S. Yoo and H. Matsunami: Jpn. J. Appl. Phys. 30 (1991), p.545.

Google Scholar

[8] P. H. Townsend, D. M. Barnett and T. A. Brunner: J. Appl, Phys. 62 (1987), p.4438.

Google Scholar

[9] M. H. Hong, A. V. Samant and P. Pirouz: Philos. Mag. A 80 (2000), p.919.

Google Scholar

[10] P. Käckell, J. Furthmüller and F. Bechstedt: Phys. Rev. B 58 (1998), p.1326.

Google Scholar

[11] A. Taylor and R. M. Jones, in: Silicon Carbide, A High Temperature Semiconductor, edited by J. R. O'Connor and J. Smiltens, Pergamon, Oxford (1960), p.147.

Google Scholar

[12] W. R. L. Lambrecht, B. Segall, M. Methfessel and M. van Schilfgaard: Phys. Rev. B 44 (1991), p.3685.

Google Scholar

[13] K. Karmann, M. Grimsditch, J. C. Nipco, C. K. Loong, M. Okada and I. Kimura: J. Appl. Phys. 82 (1997), p.3152.

Google Scholar

[14] G. A. Slack and S. F. Bartram: J. Appl. Phys. 46 (1975).

Google Scholar