Long Carrier Lifetimes in n-Type 4H-SiC Epilayers

Article Preview

Abstract:

Recent advances in preparing n-type 4H-SiC with long carrier lifetimes have greatly enhanced the possibility of realizing commercially available, very high voltage and high power solid state switching diodes. For the range > several kV, vertical bipolar structures are required with drift layers exhibiting carrier lifetimes ≥ several µsec. Recently, low-doped epilayers with carrier lifetimes in excess of this have been demonstrated, thus approaching a goal that has been pursued for over a decade. Historically, the short lifetimes in early epitaxial layers (a few hundred nsec) were eventually identified with the Vc-related Z1/2 lifetime killer. Current strategies to minimize this defect are an essential ingredient in the procedure for obtaining long-lifetime material. In order to optimize the attainable lifetimes, it has been shown that in addition to low Z1/2 levels, very thick layers are required to minimize the effects of recombination in the substrate and surface passivation is also necessary to minimize surface recombination (S < 1000 cm/sec).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Pages:

279-284

Citation:

Online since:

May 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Danno, D. Nakamura and T. Kimoto, Appl. Phys. Lett 90 (2007) p.202109.

Google Scholar

[2] W. Shockley and W.T. Read, Phys. Rev. 87 (1952) p.835.

Google Scholar

[3] R.N. Hall, Phys. Rev. 87 (1952) p.387.

Google Scholar

[4] J. Hassan and J.P. Bergman, J. Appl. Phys. 105 (2009) p.123518.

Google Scholar

[5] S.I. Maximenko, J.A. Freitas, Jr., P.B. Klein, A. Shrivastava, and T.S. Sudarshan, Appl. Phys. Lett. 94 (2009) p.092101.

Google Scholar

[6] V. Grivickas, A. Galeckas and J. Linnros, Lith. J. Phys. 37 (1997) p.473.

Google Scholar

[7] O. Kordina, J. P. Bergman, A. Henry, and E. Janzén, Appl. Phys. Lett. 66 (1995) p.189.

Google Scholar

[8] T. Kimoto, A. Yamashita, A. Itoh and H. Matsunami, Jpn. J. Appl. Phys. 32 (1993) p.1045.

Google Scholar

[9] T. Kimoto, S. Nakazawa, K. Hashimoto and H. Matsunami, Appl. Phys. Lett. 79 (2001) p.2761.

Google Scholar

[10] J. Zhang, L. Storasta, J. P. Bergman, N. T. Son, and E. Janzén, J. Appl. Phys. 93 (2003) p.4708.

Google Scholar

[11] Y. Negoro, T. Kimoto and H. Matsunami, Appl. Phys. Lett. 85 (2004) p.1716.

Google Scholar

[12] L. Storasta, J.P. Bergman, A. Henry, E. Janzén and J. Lu, J. Appl. Phys. 96 (2004) p.4909.

Google Scholar

[13] K. Danno, K. Hashimoto, H. Saitoh, T. Kimoto and H. Matsunami, Jpn. J. Appl. Phys. 43 (2004) p. L969.

Google Scholar

[14] J.R. Jenny, D.P. Malta, V.F. Tsvetkov, M.K. Das, H. McD. Hobgood, C.H. Carter, Jr., R.J. Kumar, J.M. Borrego, R.J. Gutmann and R. Aavikko, J. Appl. Phys. 100 (2006) p.113710.

DOI: 10.1063/1.2372311

Google Scholar

[15] T. Tawara, H. Tsuchida, S. Izumi, I. Kamata, and K. Izumi, Mater. Sci. Forum 457-460 (2004) p.565.

DOI: 10.4028/www.scientific.net/msf.457-460.565

Google Scholar

[16] S. A. Reshanov, W. Bartsch, B. Zippelius and G. Pensl, Mater. Sci. Forum 615-617 (2009) p.699.

DOI: 10.4028/www.scientific.net/msf.615-617.699

Google Scholar

[17] P.B. Klein, B.V. Shanabrook, S.W. Huh, A.Y. Polyakov, M. Skowronski, J.J. Sumakeris and M.J. O'Loughlin, Appl. Phys. Lett. 88 (2006) p.052110.

DOI: 10.1063/1.2170144

Google Scholar

[18] T. Kimoto, K. Danno and J. Suda, Phys. Status Solidi B 245 (2008) p.1327.

Google Scholar

[19] L. Storasta and H. Tsuchida, Appl. Phys. Lett. 90 (2007) p.062116.

Google Scholar

[20] L. Storasta, H. Tsuchida and T. Miyazawa, J. Appl. Phys. 103 (2008) p.013705.

Google Scholar

[21] T. Hiyoshi and T. Kimoto, Appl. Phys. Express 2 (2009) p.041101.

Google Scholar

[22] T. Hiyoshi and T. Kimoto, Appl. Phys. Express 2 (2009) p.091101.

Google Scholar

[23] T. Kimoto, T. Hiyoshi, T. Hayashi and J. Suda, J. Appl. Phys. 108 (2010) p.083721.

Google Scholar

[24] P.B. Klein, R. Myers-Ward, K. -K. Lew, B. L. VanMil, C.R. Eddy, Jr.,D.K. Gaskill, A. Shrivastava and T.S. Sudarshan, J. Appl. Phys. 108 (2010) p.033713.

DOI: 10.1063/1.3466745

Google Scholar

[25] P. Grivickas, J. Linnros, and V. Grivickas, J. Mater. Res. 16 (2001) p.524.

DOI: 10.1557/jmr.2001.0075

Google Scholar

[26] T. Kimoto, Y. Nanen, T. Hayashi and J. Suda, Appl. Phys. Express 3 (2010) p.121201.

Google Scholar

[27] T. Miyazawa, M. Ito and H. Tsuchida, Appl. Phys. Lett. 97 (2010) p.202106.

Google Scholar

[28] H. Tsuchida, M. Ito, I. Kamata, M. Nagano, T. Miyazawa, N. Oshino, Mater. Sci. Forum 645 (2010) p.77.

Google Scholar

[29] K. Nakayama, R. Ishii, K. Asano, T. Miyazawa, M. Ito , H. Tsuchida, Mater. Sci. Forum 679 (2011) p.535.

Google Scholar

[30] H. Miyake, T. Kimoto and J. Suda, IEEE Electron. Dev. Lett. 32 (2011) p.841.

Google Scholar

[31] K. Danno and T. Kimoto, Jpn. J. Appl. Phys. 46 (2006) p. L285.

Google Scholar

[32] K. Kawahara, G. Alfieri and T. Kimoto, J. Appl. Phys. 106 (2009) p.013719.

Google Scholar

[33] Y. Matsushita, M. Kato, M. Ichimura, T. Hatayama, and T. Ohshima, Mater. Sci. Forum 645-648 (2010) p.207.

Google Scholar

[34] L. Storasta, I. Kamata, T. Nakamura and H. Tsuchida, Mater. Sci. Forum 527-529 (2006) p.489.

Google Scholar

[35] C.G. Hemmingsson, N.T. Son, A. Ellison, J. Zhang and E. Janzén, Phys. Rev. B 58 (1998) p. R10119.

Google Scholar

[36] T. Hayashi, K. Asano, J. Suda and T. Kimoto, J. Appl. Phys. 109 (2011) p.014505.

Google Scholar

[37] T. Hayashi, K. Asano, J. Suda and T. Kimoto, J. Appl. Phys. 109 (2011) p.114502.

Google Scholar