Origin of the Warpage of 3C-SiC Wafer: Effect of Nonuniform Intrinsic Stress

Article Preview

Abstract:

Technique of bulk-like 3C-SiC film (up to 300 µm) growth on undulant-Si substrate is known to be very effective to reduce stacking fault density as well as that of other planar defects. However, freestanding 3C-SiC wafer shows anisotropic warpage involving large convex curvature in the direction perpendicular to the ridge of undulation ([110] direction), and slight concave curvature in parallel direction ([-110] direction), i.e. saddle shape. In this paper the origin of the warpage of the 3C-SiC wafer is investigated. Ex-situ curvature measurements and stress calculation reveal that large compressive intrinsic stress is generated during high-temperature growth process (1623 K) in both parallel and perpendicular directions. In order to investigate the intrinsic stress distribution along the [001] direction, a reactive ion etching (RIE) is conducted for the 3C-SiC on Si substrate to observe the dependence of the SiC/Si system curvature as a function of 3C-SiC thickness. This observation shows that the intrinsic stress component perpendicular to the ridge of undulation presents nonuniform distribution in [001] direction. The remarkable change in the intrinsic stress is observed in the 50 µm-thick region from SiC/Si interface. A finite element method simulation using the obtained intrinsic stress distribution clearly explains that the anisotropic warpage of SiC wafer is induced by the intrinsic stress distribution in quantitative manner. Microstructure change induced by stacking fault reduction process (stacking fault collision) would be the cause of the intrinsic stress variation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Pages:

501-504

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Nishino, H. Suhara, H. Ono, and H. Matsunami, Epitaxial growth and electric characteristics of cubic SiC on silicon, J. Appl. Phys. 61 (2009) 4889-4893.

DOI: 10.1063/1.338355

Google Scholar

[2] M. Kitabatake, SiC/Si heteroepitaxial growth, Thin Solid Films 369 (2000) 257-264.

DOI: 10.1016/s0040-6090(00)00819-1

Google Scholar

[3] M. Bosi, G. Attolini, B.E. Watts, F. Rossi, C. Ferrari, F. Riesz, and L. Jiang, Wafer curvature analysis in 3C-SiC layers grown on (001) and (111) Si substrates, J. Cryst. Growth 318 (2010) 401-405.

DOI: 10.1016/j.jcrysgro.2010.10.042

Google Scholar

[4] S. Veprek, T. Kunstmann, D. Volm, and BK Meyer, Relaxation of interfacial stress and improved quality of heteroepitaxial 3C-SiC films on (100) Si deposited by organometallic chemical vapor deposition at 1200 o C, J. Vac. Sci. & Technol. A 15 (2009).

DOI: 10.1116/1.580482

Google Scholar

[5] M. Zielinski, S. Ndiaye, T. Chassagne, S. Juillaguet, R. Lewandowska, M. Portail, A. Leycuras, and J. Camassel, Strain and wafer curvature of 3C-SiC films on silicon: influence of the growth conditions, Phys. Status Solidi A 204 (2007) 981-986.

DOI: 10.1002/pssa.200674130

Google Scholar

[6] H. Nagasawa, M. Abe, K. Yagi, T. Kawahara, and N. Hatta, Fabrication of high performance 3C-SiC vertical MOSFETs by reducing planar defects, Phys. Status Solidi B 245 (2008) 1272-1280.

DOI: 10.1002/pssb.200844053

Google Scholar

[7] M. Bosi, G. Attolini, B. Watts, F. Rossi, C. Ferrari, F. Riesz, and L. Jiang, J. Cryst. Growth 318(2011) 401-405.

DOI: 10.1016/j.jcrysgro.2010.10.042

Google Scholar

[8] M. Zielinski, S. Ndiaye, T. Chassagne, S. Juillaguet, R. Lewandowska, M. Portail, A. Leycuras, and J. Camassel, Phys. Status Solidi A 204(2007), 981-986.

DOI: 10.1002/pssa.200674130

Google Scholar

[9] G. Ferro, T. Chassagne, A. Leycuras, F. Cauwet, and Y. Monteil, Chem. Vapor Deposition 12(2006), 483-488.

DOI: 10.1002/cvde.200506461

Google Scholar

[10] D. Choi, R. Shinavski, W. Steffier, and S. Spearing, J. Appl. Phys. 97(2005), 074904.

Google Scholar

[11] L. Freund, J. Floro, and E. Chason, Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations, Appl. Phys. Lett. 74 (1999) (1987).

DOI: 10.1063/1.123722

Google Scholar