Nano-Scale Native Oxide on 6H-SiC Surface and its Effect on the Ni/Native Oxide/SiC Interface Band Bending

Article Preview

Abstract:

Native oxide layer with thickness of about 1 nm was found easy to form on 6H-SiC surface during transporting from cleaning process to vacuum chambers, which was examined by x-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). The interface band bending was studied by synchrotron radiation photoelectron spectroscopy (SRPES). For the native-oxide/SiC surface, after Ni deposition, the binding energy of Si 2p red-shifted about 0.34 eV, which suggested the upward bending of the interface energy band. Therefore, the native oxide layer should be considered on the study of SiC devices because it may affect the electron transport properties significantly.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 778-780)

Pages:

566-570

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. B. Casady, and R. W. Johnson, Solid-State Electron. 39 (1996) 1409-1422.

Google Scholar

[2] C. Codreanu, M. Avram, E. Carbunescu, and E. Iliescu, Mater. Sci. Semicond. Process. 3 (2000) 137-142.

Google Scholar

[3] G. V. Soares, C. Radtke, I. J. R. Baumvol, and F. C. Stedile, Appl. Phys. Lett. 88 (2006) 041901.

Google Scholar

[4] J. M. Knaup, P. Deak, T. Frauenheim, A. Gali, Z. Hajnal, and W. J. Choyke, Phys. Rev. B 71 (2005) 235321.

Google Scholar

[5] G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, R. A. Weller, S. T. Pantelides, L. C. Feldman, O. W. Holland, M. K. Das, and J. W. Palmour, IEEE Electron Device Lett. 22 (2001) 176.

DOI: 10.1109/55.915604

Google Scholar

[6] T. L. Biggerstaff, C. L. Reynolds, T. Zheleva, A. Lelis, D. Habersat, S. Haney, S. H. Ryu, A. Agarwal, and G. Duscher, Appl. Phys. Lett. 95 (2009) 032108.

DOI: 10.1063/1.3144272

Google Scholar

[7] T. Zheleva, A. Lelis, G. Duscher, F. Liu, I. Levin, and M. Das, Appl. Phys. Lett. 93 (2008), 022108.

DOI: 10.1063/1.2949081

Google Scholar

[8] C. R. S. da Silva, J. F. Justo, and I. Pereyra, Appl. Phys. Lett. 84 (2004) 4845.

Google Scholar

[9] F. Amy, P. Soukiassian, Y. K. Hwu, and C. Brylinski, Phys. Rev. B 65 (2002) 165323.

Google Scholar

[10] J. R. Waldrop, R. W. Grant, Y. C. Wang, and R. F. Davis, J. Appl. Phys. 72 (1992) 4757.

Google Scholar

[11] U. Starke, Phys. Status Solidi B-Basic Res. 202 (1997) 475.

Google Scholar

[12] C. Virojanadara, and L. I. Johansson, Phys. Rev. B 71 (2005) 195335.

Google Scholar

[13] H. Kurimoto, K. Shibata, C. Kimura, H. Aoki, and T. Sugino, Appl. Surf. Sci. 253 (2006) 2416.

Google Scholar

[14] M. Schurmann, S. Dreiner, U. Berges, and C. Westphal, Phys. Rev. B 74 (2006) 035309.

Google Scholar

[15] C. Virojanadara, and L. I. Johansson, J. Phys. -Condes. Matter 16 (2004) 1783.

Google Scholar

[16] W. Huang, S. H. Chang, X. C. Liu, B. Shi, T. Y. Zhou, X. Liu, C. F. Yan, Y. Q. Zheng, J. H. Yang, E. W. Shi, W. H. Zhang, and J. F. Zhu, Appl. Phys. Express. 5 (2012) 105802.

Google Scholar