Materials Science Forum
Vol. 789
Vol. 789
Materials Science Forum
Vol. 788
Vol. 788
Materials Science Forum
Vol. 787
Vol. 787
Materials Science Forum
Vols. 783-786
Vols. 783-786
Materials Science Forum
Vol. 782
Vol. 782
Materials Science Forum
Vol. 781
Vol. 781
Materials Science Forum
Vols. 778-780
Vols. 778-780
Materials Science Forum
Vol. 777
Vol. 777
Materials Science Forum
Vols. 775-776
Vols. 775-776
Materials Science Forum
Vols. 773-774
Vols. 773-774
Materials Science Forum
Vol. 772
Vol. 772
Materials Science Forum
Vol. 771
Vol. 771
Materials Science Forum
Vol. 770
Vol. 770
Materials Science Forum Vols. 778-780
Paper Title Page
Abstract: We have grown epitaxial layers on 2° off-cut 4H-SiC(0001) Si-face substrates. The epitaxial layer surfaces on 2° off-cut substrates are more prone to generate step-bunching than on 4° off-cut substrates, which are observed by confocal microscopy with differential interference contrast. We have speculated that the step-bunching is generated at the beginning of an epitaxial growth. Triangular defect density of epitaxial layers on 2° off-cut substrates is as low as 0.7 cm–2 for the size corresponding to 150 mm. We have firstly reported distribution of 2° off-cut epitaxial layers for the 150-mm size using two 76.2-mm wafers: σ/mean = 3.3% for thickness, σ/mean = 7.3% for carrier concentration.
214
Abstract: Simulations of SiC chemical vapor deposition is an excellent tool for understanding, improving and optimizing this complex process. However, models used up to date have often been validated for one particular set of process parameters, often in the silicon limited growth regime, in one particular growth equipment. With chlorinated precursors optimal growth condition is often found to take place at the border between carbon limited and silicon limited regimes. At those conditions the previous models fail to predict deposition rates properly. In this study we argue that molecules like C2H2, C2H4 and CH4, actually might react with the surface with much higher rates than suggested before. Comparisons are made between the previous model and our new model, as well as experiments. It is shown that higher reactivities of the hydrocarbon molecules will improve simulation results as compared to experimental findings, and help to better explain some of the trends for varying C/Si ratios.
218
Abstract: Trapezoid-shape (T-S) defects on epilayer surfaces, which include two kinds of the giant step bunching (GSB), are one of killer defects for MOSFETs. We have investigated the generation mechanism of the two GSBs using "step kinetics simulator" we developed. The simulator has reproduced the behavior of the GSBs. Based on results from the simulation, we have discussed the generation mechanism of the two GSBs.
222
Abstract: This work presents the successful CVD heteroepitaxial growth of 3C-SiC on diamond (100) substrates. When performing a direct SiC growth at 1500°C on such substrate, it leads to polycrystalline deposit. The use of a substrate pretreatment involving silicon deposition allows forming a more continuous and smoother layer. Electron BackScatter Diffraction and Transmission Electron Microscopy all revealed that the 3C-SiC layer grown on the (100) diamond substrate is monocrystalline and well oriented.
226
Abstract: The carbonized layer for a buffer layer strongly influences the crystalline quality of the 3C-SiC epitaxial films on the Si substrates. The growth mechanism of the carbonized layer strongly depended on the process conditions. The surface of silicon substrate was carbonized under the pressure of 7.8 × 10-3 Pa or 7.8 × 10-2 Pa in this research. Under the relatively low pressure of 7.8 × 10-3 Pa, the carbonized layer was grown by the epitaxial mechanism. The crystal axis of the carbonized layer grown under this pressure was confirmed to coincide with the crystal axis of the Si substrate from the results of the selected area electron diffraction (SAED) analysis. Under the relatively high pressure condition of 7.8 × 10-2 Pa, the carbonized layer was grown by the diffusion mechanism. The result of the SAED pattern and the XTEM image indicated that this layer consisted of small grainy crystals and their crystal axes inclined against the growth direction. It was confirmed that the crystalline quality of the SiC film deposited on the carbonized layer grown by the epitaxial mechanism is better than that deposited on the layer grown by the diffusion mechanism.
230
Abstract: This work deals with the localized epitaxial growth of SiC on (100) diamond substrate using the Vapour-Liquid-Solid (VLS) transport. An epitaxial relationship of grown SiC with the seed was succesfully achieved when inserting a silicidation step before the VLS growth. This silicidation consists in the formation of a SiC intermediate layer on the diamond substrate by solid-state reaction with a silicon layer deposited at 1000 or 1350 °C. On the 1350°C formed SiC buffer layer, p-doped 3C-SiC(100) islands elongated in the <110> directions were obtained after VLS growth. For the 1000°C buffer layer, the SiC deposit after VLS growth is much denser but mostly polycrystalline. Interfacial reactivity and diffusion are considered to explain the obtained results.
234
Abstract: In this paper we used three dimensional kinetic Monte Carlo simulations on super-lattices to study the hetero-polytypical growth of cubic silicon carbide polytype (3C-SiC) on hexagonal 6H-SiC substrates with miscuts towards the <11-20> and <1-100> directions. We analyze the grown film for different miscut angles (in the range 2° to 12° degrees) and different growth rates, finding that substrates with miscut of 3-4° degrees towards the <1-100> direction should be the best choice for the growth of high quality cubic epitaxial films, being able to promote, given a suitable pre-growth treatment to induce step bunching, the nucleation of single domain 3C-SiC films.
238
Abstract: We investigated three 3C-SiC samples grown on 6H SiC substrate by sublimation epitaxy under gas atmosphere. We focus on the low temperature photoluminescence and Raman measurements to show that compare to a growth process under vacuum atmosphere, the gas atmosphere favor the incorporation of impurities at already existing and/or newly created defect sites.
243
Abstract: Transmission electron microscopy and the cathodoluminescence method have been used to study the transition region in 3C-SiC/6H-SiC heterostructures. It is shown that this region is, as a rule, constituted by alternating 3C-SiC and 6H-SiC layers, with possible inclusion of other silicon carbide polytypes. An assumption is made that this structure of the transition region can be explained in terms of the spinodal decomposition model
247
Abstract: We have formed a SiC interfacial buffer layer on AlN/Si substrates at a low temperature by low-pressure chemical vapor deposition (LPCVD) using monomethylsilane (CH3SiH3; MMS), and grew 3C-SiC films on the low-temperature buffer layer by LPCVD using MMS. We investigated the surface morphology and crystallinity of the grown SiC films. It was found that the formation of the SiC buffer layer suppressed the outdiffusion of Al and N atoms from the AlN intermediate layer to the SiC films and further improved the surface morphology and crystallinity of the films.
251