Threshold-Voltage Instability in SiC MOSFETs Due to Near-Interfacial Oxide Traps

Article Preview

Abstract:

There are two basic mechanisms that affect the threshold-voltage (VT) stability: oxide-trap activation and oxide-trap charging. Once additional oxide traps are activated, then they are free to participate in the charge-trapping processes that can, especially for older vintage devices, result in large VT shifts and potential device failure. More recent commercially-available devices show much smaller effects, and minimal trap activation. Given the dramatic improvements, it is now imperative that improved test methods be employed to properly separate out bad devices from good devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

585-590

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.J. Lelis, et al., Mater. Sci. Forum 527-529 (2006) 1317.

Google Scholar

[2] A. J. Lelis, R. Green, D. B. Habersat, and M. El, IEEE Trans. Elec. Dev., 62(2) (2015) 316.

Google Scholar

[3] M. Gurfinkel, et al., IEEE Trans. Elec. Dev., 55(8) (2008) (2004).

Google Scholar

[4] T. Okayama, S. D. Arthur, J. L. Garrett, and M. V. Rao, Solid-State Electronics, 52 (2008) 164.

Google Scholar

[5] M. J. Tadjer, K. D. Hobart, E. Imhoff, and F. J. Kub, Mater. Sci. Forum, 600-603 (2009) 1147.

Google Scholar

[6] M. Grieb, et al., Mater. Sci. Forum, 645-648 (2010) 681.

Google Scholar

[7] H. Yano, et al., Mater. Sci. Forum, 679-680 (2011) 603.

Google Scholar

[8] S. DasGupta, et al., Appl. Phys. Lett., 99 (2011) 023503.

Google Scholar

[9] M. Okamoto, et al., Applied Physics Express, 5 (2012) 041302.

Google Scholar

[10] S. Noll, D. Scholten, M. Grieb, A. Bauer, and L. Frey, Mater. Sci. Forum, 740-742 (2013) 521.

Google Scholar

[11] T. Aichinger, P. Lenahan, and D. Peters, Mater. Sci. Forum, 740-742 (2013) 529.

Google Scholar

[12] H. Watanabe, et al., Mater. Sci. Forum, 740-742 (2013) 741.

Google Scholar

[13] G. Pobegen and T. Grasser, Mater. Sci. Forum, 740-742 (2013) 757.

Google Scholar

[14] K. Matocha, et al., Mater. Sci. Forum, 778-780 (2014) 903.

Google Scholar

[15] A. J. Lelis, et al., IEEE Trans. Nucl. Sci., 36(6) (1989) 1808.

Google Scholar

[16] A. J. Lelis, et al., IEEE Trans. Elec. Dev., 55(8) (2008) 1835.

Google Scholar

[17] A. J. Lelis, D. Habersat, R. Green, and N. Goldsman, Mater. Sci. Forum, 717-720 (2012) 465.

Google Scholar

[18] A. Lelis, D. Habersat, R. Green, and M. El, ECS Transactions, 58(4), (2013) 87.

Google Scholar

[19] V. V. Afanas'ev, et al., Appl. Phys. Lett., 82(4) (2003) 568.

Google Scholar

[20] H. Yano, T. Araoka, T. Hatayama, and T. Fuyuki, Mater. Sci. Forum, 740-742 (2013) 727.

Google Scholar

[21] A. J. Lelis, R. Green, and D. Habersat, Mater. Sci. Forum, 679-680 (2011) 599.

Google Scholar

[22] X. Shen and S. Pantelides, private communication, Aug. (2014).

Google Scholar

[23] C. J. Cochrane, P. M. Lenahan, and A. J. Lelis, J. Appl. Phys., 109(1) (2011) 014506.

Google Scholar

[24] M. A. Anders, et al., 2015 Intl. Rel. Physics Symposium Proc. (2015) 3E. 4. 1 - 3E. 4. 5.

Google Scholar

[25] P. M. Lenahan and P. V. Dressendorfer, J. Appl. Phys., 55(10) (1984) 3495.

Google Scholar

[26] R. Green, A. J. Lelis, M. El, and D. Habersat, Mater. Sci. Forum, 740-742 (2013) 549.

Google Scholar

[27] E. Ö. Sveinbjörnsson, et al., Mater. Sci. Forum, 527–529 (2006) 961.

Google Scholar

[28] D. J. Lichtenwalner, et al., Mater. Sci. Forum, 821–823 (2015) 749.

Google Scholar

[29] Z. Chen, et al., J. Electron. Mater., 39(5) (2010) 526.

Google Scholar

[30] D. B. Habersat, et al., Mater. Sci. Forum, 717–720 (2012) 461.

Google Scholar

[31] A. Chanthaphan, et al., Mater. Sci. Forum, 778–780 (2014) 541.

Google Scholar

[32] D. B. Habersat, N. Goldsman, and A. J. Lelis, Mater. Sci. Forum, 821–823 (2015) 697.

Google Scholar

[33] R. Green, A. Lelis, M. El, and D. Habersat, Mater. Sci. Forum, 821-823 (2015) 677.

Google Scholar

[34] A. Lelis, R. Green, D. Habersat, and M. El, presented at the International SiC Power Electronics Applications Workshop (ISiCPEAW); Stockholm, Sweden (May 2015) (unpublished).

Google Scholar

[35] R. Green, A. Lelis, and D. Habersat, 2011 Intl. Rel. Physics Symposium Proc. 11 (2011) 756.

Google Scholar

[36] Stress Test Qualification for Automotive Grade Discrete Semiconductors, AEC-Q101-Rev-C, (2005).

Google Scholar

[37] Temperature, Bias, and Operating Life Std., JESD22-A108C, (2005).

Google Scholar

[38] Test Methods for Semiconductor Devices, MIL-STD-750E, (2006).

Google Scholar

[39] D. Habersat, A. Lelis, R. Green, and M. El, Comparison of Test Methods for Proper Characterization of VT in SiC MOSFETs, to be published Mater. Sci. Forum (2016).

DOI: 10.4028/www.scientific.net/msf.858.833

Google Scholar