Quantified Density of Active near Interface Oxide Traps in 4H-SiC MOS Capacitors

Article Preview

Abstract:

This paper presents a new method to quantify near interface oxide traps (NIOTs) that are responsible for threshold voltage instability of 4H-SiC MOSFETs. The method utilizes the shift observed in capacitance–voltage (C–V) curves of an N-type MOS capacitor. The results show that both shallow NIOTs with energy levels below the bottom of conduction band and NIOTs with energy levels above the bottom of the conduction band of SiC are responsible for the C–V shifts, and consequently, for the threshold voltage instabilities in MOSFETs. A higher density of NIOTs is measured at higher temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

603-606

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Dimitrijev, J. Han, H. Amini Moghadam, A. Aminbeidokhti, Power-switching applications beyond silicon: Status and future prospects of SiC and GaN devices, MRS Bull., 40 (2015) 399-405.

DOI: 10.1557/mrs.2015.89

Google Scholar

[2] A. L. Lelis, R. Green, D. B. Habersat, M. El, Basic mechanisms of threshold voltage instability and implications for reliability testing of SiC MOSFETS, IEEE Trans. Electron Devices, 62 (2015) 316-322.

DOI: 10.1109/ted.2014.2356172

Google Scholar

[3] D. Habersat, A. Lelis, Improved observation of SiC/SiO2 oxide charge traps using MOS C–V, Mater. Sci. Forum, 679 (2011) 366-369.

DOI: 10.4028/www.scientific.net/msf.679-680.366

Google Scholar

[4] J. A. Cooper, Advances in SiC MOS technology, physica status solidi (a), 162 (1997) 305-319.

Google Scholar

[5] D. Okamoto, H. Yano, Y. Oshiro, T. Hatayama, Y. Uraoka, T. Fuyuki, Investigation of near interface traps generated by NO direct oxidation in C-face 4H-SiC Metal-Oxide-Semiconductor structures, Appl. Phys. Express, 2 (2009) 021201.

DOI: 10.1143/apex.2.021201

Google Scholar

[6] H. Amini Moghadam, S. Dimitrijev, J. Han, D. Haasmann, A. Aminbeidokhti, Transient-Current method for measurement of active near-interface oxide traps in 4H-SiC MOS capacitors and MOSFETs, IEEE Trans. Electron Devices, 62 (2015) 2670-2674.

DOI: 10.1109/ted.2015.2440444

Google Scholar

[7] D. Haasmann, S. Dimitrijev, Energy position of the active near-interface traps in metal–oxide–semiconductor field-effect transistors on 4H-SiC, Appl. Phys. Lett. 103 (2013) 113506.

DOI: 10.1063/1.4821362

Google Scholar

[8] M. Gurfinkel, H. D. Xiong, K. P. Cheung, J. S. Suehle, J. B. Bernstein, Y. Shapira, A. L. Lelis, D. Habersat, N. Goldsman, Charactrization of transient gate oxide trapping in SiC MOSFETs using fast I–V techniques, IEEE Trans. Electron Devices, 55 (2008).

DOI: 10.1109/ted.2008.926626

Google Scholar

[9] D. Haasmann, S. Dimitrijev, J. Han, A. Iacopi, Growth of gate oxides on 4H-SiC by NO at low partial pressures, Mater. Sci. Forum, 778 (2014) 627-630.

DOI: 10.4028/www.scientific.net/msf.778-780.627

Google Scholar

[10] F. Pregaldiny, C. Lallement, D. Mathiot, Accounting for quantum mechanical effects from accumulation to inversion, in a fully analytical surface-potential-based MOSFET model, Solid-State Electronics, 48 (2004) 781-787.

DOI: 10.1016/j.sse.2003.12.010

Google Scholar