Novel 3C-SiC Microstructure for MEMS Applications

Article Preview

Abstract:

The aim of this paper is to review the recent developments conducted for the achievement of 3C-SiC‑based heterostructures compatible with MEMS applications. Indeed, the research activities engaged since years permitted to demonstrate that the defect density has an impact towards the Young’s modulus of sub-micron 3C‑SiC epilayers. We also gained knowledge about the stress relaxation mechanisms, targeting to master the stress gradient, as stress is a key parameter to consider MEMS applications.Based on these results, we investigated the elaboration of microstructures using 3C‑SiC/Si/3C‑SiC stacks on silicon substrates. Our first noticeable result was the elaboration of a (110)-oriented 3C‑SiC membrane on a 3C‑SiC pseudo-substrate, using the silicon epilayer as a sacrificial one. But the surface of the 3C‑SiC membrane was facetted and rough, which could hamper its use for the development of new MEMS devices. Then, with further improvements, we succeeded to master the growth of a (111)‑oriented 3C‑SiC epilayer. This feature led to a drastic reduction of the roughness in comparison with the (110) orientation. Actually, using the same experimental protocol than previously, we succeeded to complete a (111)‑oriented 3C‑SiC membrane with a RMS roughness limited to 9nm. Such an optimized structure could be the starting point for the achievement of new MEMS devices operating in harsh environment or for medical applications benefiting of the 3C‑SiC biocompatibility

You might also be interested in these eBooks

Info:

Periodical:

Pages:

723-728

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Silicon Carbide (SiC) Microelectromechanical Systems (MEMS) for Harsh Environments, edited by R. Cheung, Imperial College Press, (2006).

DOI: 10.1142/9781860949098_0001

Google Scholar

[2] M. Mehregany and C.A. Zorman, Thin Solid Films 355-356 (1999) 518.

Google Scholar

[3] P.M. Sarro, Sensors and Actuators 82 (2000) 210.

Google Scholar

[4] S. Nishino, J.A. Powell, H.A. Will, Applied Physics Letters 42 (1983) 460.

Google Scholar

[5] J. Eriksson, M.H. Weng, F. Roccaforte, F. Giannazzo, S. Leone, V. Raineri. Applied Physics Letters 95 (2009) 081907.

DOI: 10.1063/1.3211965

Google Scholar

[6] X. Song, J. F. Michaud, F. Cayrel, M. Zielinski, M. Portail, T. Chassagne, E. Collard and D. Alquier, Applied Physics Letters 96 (2010) 142104.

DOI: 10.1063/1.3383233

Google Scholar

[7] Stephen E. Saddow, Silicon Carbide Biotechnology - A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications, Elsevier, (2011).

Google Scholar

[8] W. Chang and C. Zorman. Journal of Materials Science 43 (2008) 4512.

Google Scholar

[9] M. Placidi, P. Godignon, N. Mestres, G. Abadal, G. Ferro, A. Leycuras and T. Chassagne. Sensors and Actuators B 133 (2008) 276.

DOI: 10.1016/j.snb.2007.07.148

Google Scholar

[10] R. Boubekri, E. Cambril, L. Couraud, L. Bernardi, A. Madouri, M. Portail, T. Chassagne, C. Moisson, M. Zielinski, S. Jiao, J. -F. Michaud, D. Alquier, J. Bouloc, L. Nony, F. Bocquet, C. Loppacher, D. Martrou and S. Gauthier. Journal of Applied Physics 116 (2014).

DOI: 10.1063/1.4891833

Google Scholar

[11] M.B.J. Wijesundara and R. Azevedo. Silicon carbide microsystems for harsh environments. MEMS Reference Shelf 22. Springer (2011).

DOI: 10.1007/978-1-4419-7121-0

Google Scholar

[12] S. Sundararajan and B. Bhushan. Wear 217 (1998) 251.

Google Scholar

[13] B. Pecholt and P. Molian. Materials and Design 32 (2011) 3414.

Google Scholar

[14] C. Locke, G. Kravchenko, P. Waters, J.D. Reddy, K. Du, A.A. Volinsky, C.L. Frewin and S.E. Saddow, Materials Science Forum 615–617 (2009) 633.

DOI: 10.4028/www.scientific.net/msf.615-617.633

Google Scholar

[15] S. Jiao, J.F. Michaud, M. Portail, A. Madouri, T. Chassagne, M. Zielinski and D. Alquier, Materials Letters 77 (2012) 54.

DOI: 10.1016/j.matlet.2012.02.128

Google Scholar

[16] C. Cardinaud, M.C. Peignon, P.Y. Tessier. Applied Surface Science 164 (2000) 72.

Google Scholar

[17] P.H. Yih, V. Saxena and A.J. Steckl. Physica Status Solidi (b) 202 (1997) 605.

Google Scholar

[18] 3C-SiC: from electronic to MEMS devices, in Advanced Silicon Carbide Devices and Processing, edited by S.E. Saddow and F. La Via, Intech, 2015 ISBN 978-953-51-2168-8.

DOI: 10.5772/61020

Google Scholar

[19] J.F. Michaud, S. Jiao, A.E. Bazin, M. Portail, T. Chassagne, M. Zielinski and D. Alquier, Materials Research Society Symposium Proceedings 1246 (2010) B09-04.

DOI: 10.1557/proc-1246-b09-04

Google Scholar

[20] R. Anzalone, M. Camarda, A. Canino, N. Piluso, F. La Via, and G. D'Arrigo, Electrochem. Solid-State Lett. 2011 14(4): H161-H162.

DOI: 10.1149/1.3544492

Google Scholar

[21] K. Yagi and H. Nagasawa, Materials Science Forum 264-268 (1998) 191.

Google Scholar

[22] T. Tong, M. Mehregany and L.G. Matus, Applied Physics Letters 60, 2992 (1992).

Google Scholar

[23] W. Fang and J. A. Wickert, Journal of Micromechanics and Microengineering 6 (1996) 301.

Google Scholar

[24] M. Zielinski, J.F. Michaud, S. Jiao, T. Chassagne, A.E. Bazin, A. Michon, M. Portail and D. Alquier, Journal of Applied Physics 111 (2012) 53507.

DOI: 10.1063/1.3687370

Google Scholar

[25] J.F. Michaud, M. Portail, T. Chassagne, M. Zielinski and D. Alquier, Microelectronic Engineering 105 (2013) 65.

DOI: 10.1016/j.mee.2013.01.010

Google Scholar

[26] R. Khazaka, M. Portail, P. Vennéguès, D. Alquier and J.F. Michaud, Acta Materialia 98 (2015) 336.

DOI: 10.1016/j.actamat.2015.07.052

Google Scholar

[27] R. Khazaka, M. Portail, P. Vennéguès, M. Zielinski, T. Chassagne, D. Alquier, J.F. Michaud, Materials Science Forum 821 (2015) 978-981.

DOI: 10.4028/www.scientific.net/msf.821-823.978

Google Scholar

[28] R. Khazaka, E. Bahette, M. Portail, D. Alquier and J.F. Michaud, Materials Letters 160 (2015) 28.

DOI: 10.1016/j.matlet.2015.07.071

Google Scholar