[1]
M. Mehregany, C. A. Zorman, N. Rajan, C. H. Wu, Silicon Carbide MEMS for Harsh Environments, Proc. IEEE 86 (1998) 1594-1609.
DOI: 10.1109/5.704265
Google Scholar
[2]
R. Cheung, Silicon Carbide Micro Electromechanical Systems, Imperial College Press, London, (2006).
Google Scholar
[3]
R. B. Reichenbach, M. Zalalutdinov, K. L. Aubin, R. Rand, B. H. Houston, J. M. Parpia, H. G. Craighead, Third-order intermodulation in a micromechanical thermal mixer, J. Microelectromech. Syst. 14 (2005) 1244–1252.
DOI: 10.1109/jmems.2005.859080
Google Scholar
[4]
E. Mastropaolo, R. Cheung, Electrothermal actuation studies on silicon carbide resonators, J. Vac. Sci. Technol. B 26 (2009) 2619-2623.
DOI: 10.1116/1.3013862
Google Scholar
[5]
E. Mastropaolo, G. S. Wood, I. Gual, P. Parmiter, R. Cheung, Electrothermally Actuated Silicon Carbide Tunable MEMS Resonators. J. Microelectromech. Syst. 21 (2012) 811–821.
DOI: 10.1109/jmems.2012.2189357
Google Scholar
[6]
T. Remtema, L. Lin, Active frequency tuning for micro resonators by localized thermal stressing effects, Sens. Actuators A, Phys., 91 (2001) 326–332.
DOI: 10.1016/s0924-4247(01)00603-3
Google Scholar
[7]
D. DeVoe, Piezoelectric thin film micromechanical beam resonators, Sens. Actuators. A, Phys. 88 (2001) 263–272.
DOI: 10.1016/s0924-4247(00)00518-5
Google Scholar
[8]
B. Sviličić, E. Mastropaolo, R. Zhang, R. Cheung, Tunable MEMS cantilever resonators electrothermally actuated and piezoelectrically sensed, Microelectron. Eng. 145 (2015) 38-42.
DOI: 10.1016/j.mee.2015.02.049
Google Scholar
[9]
B. Sviličić, E. Mastropaolo, B. Flynn, R. Cheung, Electrothermally Actuated and Piezoelectrically Sensed Silicon Carbide Tunable MEMS Resonator, IEEE Electron Dev. Lett. 33 (2012) 278-280.
DOI: 10.1109/led.2011.2177513
Google Scholar
[10]
B. Sviličić, E. Mastropaolo, R. Cheung, Piezoelectric sensing of electrothermally actuated silicon carbide MEMS resonators, Microelectron. Eng. 119 (2014) 24-27.
DOI: 10.1016/j.mee.2014.01.007
Google Scholar
[11]
B. Sviličić, E. Mastropaolo, R. Cheung, Widely tunable MEMS ring resonator with electrothermal actuation and piezoelectric sensing for filtering applications, Sens. Actuators. A, Phys. 226 (2015) 149-153.
DOI: 10.1016/j.sna.2015.02.023
Google Scholar
[12]
E. Mastropaolo, G. S. Wood, R. Cheung, Electro-thermal behaviour of Al/SiC clamped-clamped beams, Microelectron. Eng. 87 (2010) 573-575.
DOI: 10.1016/j.mee.2009.08.012
Google Scholar
[13]
Todd Remtema, Liwei Lin, Active frequency tuning for micro resonators by localized thermal stressing effects, Sensors and Actuators A, 91 (2001) 326-332.
DOI: 10.1016/s0924-4247(01)00603-3
Google Scholar
[14]
Seong Chan Jun, X M H Huang, M Manolidis, C A Zorman, M Mehregany, J Hone, Electrothermal tuning of Al–SiC nanomechanical resonators, Nanotechnology, 17, (2006) 1506-1511.
DOI: 10.1088/0957-4484/17/5/057
Google Scholar
[15]
Hasan Göktas and Mona E. Zaghloul, Tuning In-Plane Fixed–Fixed Beam Resonators With Embedded Heater in CMOS Technology, IEEE Electron Dev. Lett., 36, (2015) 189-191.
DOI: 10.1109/led.2014.2381557
Google Scholar