Conductivity Modulated and Implantation-Free 4H-SiC Ultra-High-Voltage PiN Diodes

Article Preview

Abstract:

Implantation-free mesa etched ultra-high-voltage 4H-SiC PiN diodes are fabricated, measured and analyzed by device simulation. The diode’s design allows a high breakdown voltage of about 19.3 kV according to simulations. No reverse breakdown is observed up to 13 kV with a very low leakage current of 0.1 μA. A forward voltage drop (VF) and differential on-resistance (Diff. Ron) of 9.1 V and 41.4 mΩ cm2 are measured at 100 A/cm2, respectively, indicating the effect of conductivity modulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

568-572

Citation:

Online since:

June 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Östling, Silicon Carbide Based Power Devices,, in IEEE Electron Devices Meeting (IEDM), p.13.3.1-13.3.4, (2010).

Google Scholar

[2] T. Kimoto and J. A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications. John Wiley & Sons, (2014).

Google Scholar

[3] H. Niwa, J. Suda, and T. Kimoto, 21.7 kV 4H-SiC PiN diode with a Space-Modulated Junction Termination Extension,, Appl. Phys. Express, vol. 5, no. 6, p.4–6, (2012).

DOI: 10.1143/apex.5.064001

Google Scholar

[4] J. W. Palmour, Silicon carbide power device development for industrial markets,, in IEEE Electron Devices Meeting (IEDM), p.1.1.1-1.1.8, (2014).

DOI: 10.1109/iedm.2014.7046960

Google Scholar

[5] A. Salemi et al., Conductivity modulated on-axis 4H-SiC 10+ kV PiN diodes,, Proc. Int. Symp. Power Semicond. Devices ICs (ISPSD), vol. 2015–June, p.269–272, (2015).

DOI: 10.1109/ispsd.2015.7123441

Google Scholar

[6] R. Ghandi, B. Buono, M. Domeij, G. Malm, C.-M. Zetterling, and M. Östling, High-Voltage 4H-SiC PiN Diodes With Etched Junction Termination Extension,, IEEE Electron Device Lett., vol. 30, no. 11, p.1170–1172, Nov. (2009).

DOI: 10.1109/led.2009.2030374

Google Scholar

[7] G. Pâques, S. Scharnholz, N. Dheilly, D. Planson, and R. W. De Doncker, High-Voltage 4H-SiC Thyristors With a Graded Etched Junction Termination Extension,, IEEE Electron Device Lett., vol. 32, no. 10, p.1421–1423, (2011).

DOI: 10.1109/led.2011.2163055

Google Scholar

[8] H. Elahipanah, A. Salemi, C.-M. Zetterling, and M. Östling, Modification of Etched Junction Termination Extension for the High Voltage 4H-SiC Power Devices,, Mater. Sci. Forum, vol. 858, p.4–5, (2016).

DOI: 10.4028/www.scientific.net/msf.858.978

Google Scholar

[9] A. Salemi, H. Elahipanah, G. Malm, C.-M. Zetterling, and M. Östling, Area- and efficiency-optimized junction termination for a 5.6 kV SiC BJT process with low ON-resistance,, Proc. Int. Symp. Power Semicond. Devices ICs (ISPSD), p.249–252, (2015).

DOI: 10.1109/ispsd.2015.7123436

Google Scholar

[10] L. Lanni, B. G. Malm, M. Östling, and C.-M. Zetterling, SiC etching and sacrificial oxidation effects on the performance of 4H-SiC BJTs,, Mater. Sci. Forum, vol. 778, p.1005–1008, (2014).

DOI: 10.4028/www.scientific.net/msf.778-780.1005

Google Scholar

[11] A. Salemi, H. Elahipanah, C.-M. Zetterling, and M. Östling, Investigation of the Breakdown Voltage in High Voltage 4H-SiC BJT with Respect to Oxide and Interface Charges,, Mater. Sci. Forum, vol. 821–823, p.834–837, (2015).

DOI: 10.4028/www.scientific.net/msf.821-823.834

Google Scholar

[12] L. Lanni, B. G. Malm, M. Östling, and C.-M. Zetterling, Influence of Passivation Oxide Thickness and Device Layout on the Current Gain of SiC BJTs,, IEEE Electron Device Lett., vol. 36, no. 1, p.11–13, (2015).

DOI: 10.1109/led.2014.2372036

Google Scholar

[13] A. O. Konstantinov, Q. Wahab, N. Nordell, and U. Lindefelt, Ionization Rates and Critical Fields in 4H SiC Junction Devices,, Mater. Sci. Forum, vol. 264–268, no. March, p.513–516, (1998).

DOI: 10.4028/www.scientific.net/msf.264-268.513

Google Scholar