[1]
T. Ohmi, T. Imaoka, I. Sugiyama, T. Kezuka: J. Elrctrochem. Soc., Vol. 139, p.3317, (1992)
Google Scholar
[2]
H. Wendt, H. Cerva, V. Lehmann, W. Pamler: J. App. Phys., Vol. 65, p.2402, (1989)
Google Scholar
[3]
M. Hourai, T. Naridomi, Y. Oka, K. Murakami, S. Sumita and N. Fujino: Jpn. J. App. Phy., Vol. 27, p.2361, (1988)
Google Scholar
[4]
C. Richard, F. Guyader, K. Barla: Solid State Phenomena Vol.92, p.117, (2003)
Google Scholar
[5]
J. Kedzierski, P. Xuan, V. Subramanian, J. Bokor, T. KING, C. HU: Superlattices and Microstructures, Vol. 28, No. 5/6, (2000)
Google Scholar
[6]
D.Z. Chi, D. Mangelink, A.S. Zuruzi, A.S.W. Wong, and S.K. Lahiri: Journal of ELECTRONIC MATERIALS, Vol. 30, No. 12, (2001)
Google Scholar
[7]
P.S. Lysaght, I. Ybarra, T. Doros, J.V. Beach, H. Sax, J.L. Mello, M.G. West, and G. Gupta: ECS October, 1999 Fig.1 Life time of Aqua Regia Fig.2 The procedure of the single Aqua regia process. Fig.3 Etching rate dependence of chemical dispense order. Fig. 4 The effect of decontamination of Pt on the wafer backside. Picture 1. The undercut area on the edge of the wafer. Fig.5 Etching rate of Aqua Regia by conventional wet bench. Fig.6 Etching rate of Aqua Regia by direct mixing method. Recirculation Chemical Tank 1 Chemical Tank 2 a. Supply chemical 1 Drain b. Supply chemical 2 and reaction of Aqua Regia Chemical Tank 1 Chemical Tank 2 Drain DIW c. Rinse and dry 0 2 4 6 8 10 0 10 20 30 40 Elapsed Time[min] Etch rate of Pt [nm/min] HNO3:HCl = 1: 3 (Vol), 60ºC 0.0 0.5 1.0 1.5 2.0 HNO3 -> HCL Etch rate[A.U.] HCL -> HNO3 1E+09 1E+10 1E+11 1E+12 1E+13 1E+14 Pre Post Pre Post Pre 10sec 20sec 30sec HCl-> HNO HCl-> HNO/HF FPM (1:1:10) Post Pt Contamination [atoms/cm2] 0.0 1.0 2.0 3.0 4.0 5.0 6.0 40ºC 60ºC 40ºC 60ºC HNO3:HCl:H2O = 1:3:4 HNO3:HCl:H2O = 1:3:6 Etch rate[nm/min] Pt Poly Si SiN SiO2 Concentration
Google Scholar