Growth and Characterization of GaN Nano-Column Grown on Si (111) Substrate Using Au+Ga Alloy Seeding Method by MOCVD

Article Preview

Abstract:

We have studied the Au+Ga alloy seeding method. Single-crystal GaN nano-column arrays were grown using metalorganic chemical vapor deposition (MOCVD) and their properties were investigated as a function of the growth parameters and Au thin film thickness. Au-coated Si(111) substrates were used for the growth of GaN nano-columns. The diameter and length of as-grown nano-column ranged from 100 to 500 nm and 1 to 5 μm, respectively. The morphology of the columns was investigated using scanning electron microscopy. Energy dispersive X-ray spectroscopy and photoluminescence were used for evaluating of its qualitative analysis and to evaluate the optical properties, respectively. Two important growth parameters were considered, the thickness of the Au thin film and the gallium flow rate. The density and tendency of the nano-columns depend on each of these growth parameters. It is believed that the catalytic activity of gold is determined by the size of the Au+Ga solid solution particles, and smaller Au+Ga clusters showed significant reactivity in the growth of one-dimensional GaN nano structures.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 124-126)

Pages:

113-118

Citation:

Online since:

June 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.N.R. Rao, F.L. Deepak, Gautam Gundiah, A. Govindaraj, Progress in Solid State Chemistry 31 (2003) 5-147.

DOI: 10.1016/j.progsolidstchem.2003.08.001

Google Scholar

[2] S.C. Jain, M. Willander, J. Narayan, R. Van Overstraeten, J. Appl. Phys. 87 (2000) 965.

Google Scholar

[3] Chuanbao Cao, Xu Xiang, Hesun Zhu. Journal of Crystal Growth 273 (2005) 375-380.

Google Scholar

[4] Masaki Yoshizawa, Akihiko Kikuchi, Nobuhiko Fujita, Kouichi Kushi, Hajime Sasamoto, Katsumi Kishino, Journal of Crystal Growth 189/190 (1998) 138-141.

DOI: 10.1016/s0022-0248(98)00188-2

Google Scholar

[5] H. Yonezu, Y. Furukawa, H. Abe, Y. Yoshikawa, S. -Y. Moon, A. Utsumi,Y. Yoshizumi, A. Wakahara, M. Ohtani Optical Materials 27 (2005) 799-803.

DOI: 10.1016/j.optmat.2004.08.002

Google Scholar

[6] Kazuhide Kusakabe1, Akihiko Kikuchi, Katsumi Kishino, Journal of Crystal Growth 237-239 (2002) 988-992.

Google Scholar

[7] H. M. Kim, D. S. Kim, D. Y. Kim, T. W. Kang, Y. H. Cho and K. S. Chung: Appl. Phys. Lett. 81 (2002) 2193.

Google Scholar

[8] J. Ristic', M. A. S. Garcia, J. M. Ulloa, E. Calleja, J. S. Paramo, J. M. Calleja, U. Jahn, A. Trampert and K. H. Ploog: Phys. Status Solidi (b) 234 (2002) 717.

DOI: 10.1002/1521-3951(200212)234:3<717::aid-pssb717>3.0.co;2-8

Google Scholar

[9] Maoqi Hea, Peizhen Zhoua, S. Noor Mohammada, Gary L. Harrisa, Joshua,B. Halperna, Randy Jacobsb, Wendy L. Sarneyb, Lourdes Salamanca-Rib, Journal of Crystal Growth 231 (2001) 357-365.

Google Scholar

[10] Wei-Qiang Han and Alex Zettla, applied physics letters, volume 80, number 2, (2002).

Google Scholar

[11] Akihiko KIKUCHI, Mizue KAWAI, Makoto TADA and Katsumi KISHINO, Japanese Journal of Applied Physics 43 (2004).

Google Scholar