Aging Phenomena in the Removal of Nano-Particles from Si Wafers

Article Preview

Abstract:

With the continuous shrinkage of critical sizes in semiconductor manufacturing, nano-particles smaller than 100-nm are becoming a potential threat to devices in chips. Storage of wafers contaminated during process steps often results in a decrease of particle removal efficiency in subsequent clean, a phenomenon referred to as aging. In this work, the influence of aging on the removal of silica and silicon nitride nano-particles from hydrophilic Si wafers was studied for different storage conditions. Trends observed for aging as a function of particle size and for different tools indicated that aging will become an issue for critical cleans where substrate etching must be kept very low and the physical component of the clean must be decreased to prevent damage to fine structures. Controlling the relative humidity during storage helped in lowering the effect of aging.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 134)

Pages:

155-158

Citation:

Online since:

November 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] The International Technology Roadmap for Semiconductors, http/public. itrs. net/ (2005).

Google Scholar

[2] D.S. Rimai and A.A. Busnaina: Particulate Sci. Tech. 13 (1995), p.249.

Google Scholar

[3] K. Christenson, C. Bode, and K. Johnson: Proc. Inst. Env. Sci. (1996), p.112.

Google Scholar

[4] D.S. Rimai, L.P. DeMejo, R. Bowen, and J.D. Morris: in Particles on Surfaces (K.L. Mittal, Ed., Marcel Dekker, New York, 1995), p.1.

Google Scholar

[5] R.A. Bowling: J. Electrochem. Soc. Solid State Sci. Technol. 132 (1985), p.2208.

Google Scholar

[6] A.A. Busnaina and T. Elsawy: J. Adhesion 74 (2000), p.391.

Google Scholar

[7] M. Meuris, P.W. Mertens, A. Opdebeeck, H.F. Schmidt, M. Depas, G. Vereecke, M.M. Heyns, and A. Philipossian: Solid State Technol., July (1995), p.109.

Google Scholar

[8] G. Vereecke, F. Holsteyns, J. Veltens, M. Lux, S. Arnauts, K. Kenis, R. Vos, P.W. Mertens, and M.M. Heyns: Proc. 8th Int. Symp. Cleaning Technol. in Semicond. Dev. Manuf., Eds. J. Ruzyllo, T. Hattori, R. Opila, and R.E. Novak, Electrochem. Soc. PV 2003-26, (2004).

DOI: 10.4028/www.scientific.net/ssp.92.27

Google Scholar

[9] G. Vereecke, F. Holsteyns, S. Arnauts, K. Kenis, M. Lux, R. Vos, J. Snow, and P.W. Mertens: Solid State Phenom. 103-104 (2005), p.141.

DOI: 10.4028/www.scientific.net/ssp.103-104.141

Google Scholar

[10] A. Eitoku, J. Snow, R. Vos, M. Sato, S. Hirae, K. Nakajima, M. Nonomura, M. Imai, P.W. Mertens, and M.M. Heyns: Solid State Phenom. 92 (2003), p.157.

DOI: 10.4028/www.scientific.net/ssp.92.157

Google Scholar

[11] K. Xu, R. Vos, G. Vereecke, G. Doumen, W. Fyen, P.W. Mertens, M.M. Heyns, C. Vinckier, and J. Fransaer: J. Vac. Sci. Technol. B 22 (2004), p.2844.

DOI: 10.1116/1.1815319

Google Scholar

[12] S.H. Yoo, B.Y.H. Liu, J. Sun, N. Narayanswami, and G. Thomes: Solid State Phenom. 76-77 (2001), p.259.

Google Scholar

[13] K. Xu, R. Vos, G. Vereecke, M. Lux, W. Fyen, F. Holsteyns, K. Kenis, P.W. Mertens, M.M. Heyns, and C. Vinckier: Solid State Phenom. 92 (2003), p.161.

DOI: 10.4028/www.scientific.net/ssp.92.161

Google Scholar

[14] J. -W. Feng, A.A. Busnaina, and W.P. Ryszytiwskyj: Surf. Eng. 17 (2001), p.425.

Google Scholar