Review of Stress Effects on Dopant Solubility in Silicon and Silicon-Germanium Layers

Article Preview

Abstract:

We present a review of both theoretical and experimental studies of stress effects on the solubility of dopants in silicon and silicon-germanium materials. Critical errors and limitations in early theory are discussed, and a recent treatment incorporating charge carrier induced lattice strain and correct statistics is presented. Considering all contributing effects, the strain compensation energy is the primary contribution to solubility enhancement in both silicon and silicon-germanium for dopants of technological interest. An exception is the case of low-solubility dopants, where a Fermi level contribution is also found. Explicit calculations for a range of dopant impurities in Si are presented that agree closely with experimental findings for As, Sb and B in strained Si. The theoretical treatment is also applied to account for stress effects in strained SiGe structures, which also show close correlation with recently derived experimental results for B-doped strained SiGe which are presented here for the first time.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 156-158)

Pages:

173-180

Citation:

Online since:

October 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Cordier and. J. -C. - Doukhan, Eur. J. Mineral 1, 221 (1989).

Google Scholar

[2] Y. Kim et al., J. Alloy and Compounds 429, 221 (2007).

Google Scholar

[3] N. S. Bennett et al., Appl. Phys. Lett. 89, 182122 (2006).

Google Scholar

[4] H. Su et al., Phys. Rev. B 70, 054517 (2004).

Google Scholar

[5] B. Sadigh et al., Appl. Phys. Lett. 80, 4738 (2002).

Google Scholar

[6] J. Adey et al., Phys. Stat. Sol. (c) 2, 1953 (2005).

Google Scholar

[7] M. Diebel et al., Simulation of Semiconductor Processes and Devices - SISPAD 2004, 37 (2004).

Google Scholar

[8] C. Ahn and S. T. Dunham, Appl. Phys. Lett. 93, 22112 (2008).

Google Scholar

[9] A. Höglund et al., Phys. Rev. Lett. 100, 105501 (2008).

Google Scholar

[10] N. Sugii et al., J. Appl. Phys. 96, 261 (2004).

Google Scholar

[11] N. S. Bennett et al., J. Vac. Sci. Technol. B 26, 391 (2008).

Google Scholar

[12] F. Lanzerath et al., J. Appl. Phys. 104, 044908 (2008).

Google Scholar

[13] N. S. Bennett, Ph.D. Thesis, University of Surrey, U.K. (2008).

Google Scholar

[14] P. Boguslawski et al., Phys. Rev. Lett. 96, 185501 (2006).

Google Scholar

[15] C. Ahn and S. T. Dunham, Phys. Rev. B 78, 195303 (2008).

Google Scholar

[16] C. Ahn et al., Phys. Rev. B 79, 073201 (2009).

Google Scholar

[17] M. R. Sardela et al., Semicond. Sci. Technol. 9, 1272 (1994).

Google Scholar

[18] T. L. Aslage, J. Mater. Res. 13, 1786 (1998).

Google Scholar

[19] J. Yamauchi et al., Phys. Rev. B 55, R10245 (1997).

Google Scholar

[20] K. C. Pandey et al., Phys. Rev. Lett. 61, 1282 (1988).

Google Scholar

[21] F. A. Trumbore, Bell. Sys. Tech. J. 39, 205 (1960).

Google Scholar

[22] S. Solmi et al., J. Appl. Phys. 92, 1361 (2002).

Google Scholar

[23] R. J. van Overstraeten et al., IEEE Trans. Electron Dev. 20, 290 (1973).

Google Scholar

[24] N. F. Mott, Rev. Mod. Phys. 40, 677 (1968).

Google Scholar

[25] P. Dai et al., Phys. Rev. B 45, 3984 (1992).

Google Scholar

[26] P. P. Altermatt et al., J. Appl. Phys. 100, 113714 (2006).

Google Scholar

[27] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

Google Scholar

[28] VASP the GUIDE, http: /ms. mpi. univie. ac. at/vasp.

Google Scholar

[29] J. P. Perdew et al., Phys. Rev. B 46, 6671 (1991).

Google Scholar

[30] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

Google Scholar

[31] A. Nylandsted Larsen et al., J. App. Phys. 71, 4854 (1992).

Google Scholar

[32] J. Narayan and O. W. Holland, Appl. Phys. Lett. 41, 239 (1982).

Google Scholar

[33] J. W. Cahn et al., in Laser and Electron Beam Processing of Materials, Academic, New York (1980) p.89.

Google Scholar

[34] S. Gannavaram et al., IEDM Tech. Dig., 437 (2000).

Google Scholar

[35] C. Ahn et al., J. Vac. Sci. Technol. B 24, 700 (2006).

Google Scholar

[36] F. Severac et al., J. Appl. Phys. 105, 043711 (2009).

Google Scholar

[37] L. Romano et al., Mater. Sci. Eng. B 102, 49 (2003).

Google Scholar

[38] N. S. Bennett et al., Mater. Sci. Eng. B 154, 229 (2008).

Google Scholar