Surface Chemistry of GaAs(100) and InAs(100) Etching with Tartaric Acid

Article Preview

Abstract:

Incorporating substrates with higher charge mobilities than Si and Ge in metal-oxide-semiconductor field-effect transistors (MOSFETs) would extend the scaling of this device architecture. III-V semiconductors are candidates, and etching and passivation processes are needed that are selective and yield smooth surfaces. The (100) face of III-V compounds contains both electron-deficient group III (Ga, In) atoms and electron-rich group V (P, As, Sb) atoms. Etching InP(100) in a mixture of HCl and H2O2 chlorinates the In (group III) atom forming a soluble product [1,2], yet the P (group V) atom is more reactive and is depleted from the surface [3]. α-Hydroxy acids (lactic, citric, malic, and tartaric) have been shown to bind to the group III atom [3] and could promote more uniform etching. This paper compares the surface chemistry of GaAs and InAs after etching in HCl and H2O2 mixtures with and without tartaric acid.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 219)

Pages:

52-55

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. H. L. Notten: J. Electrochem. Soc. 131 (1984) 2641.

Google Scholar

[2] D. Cuypers, S. De Gendt, S. Arnauts, K. Paulussen and D. H. van Dorp: ECS J. Solid State Sci. Technol. 2 (2013) 185.

DOI: 10.1149/2.020304jss

Google Scholar

[3] P. Bandaru and E. Yablonovitch: J. Electrochem. Soc. 149 (2002) G599-G602.

Google Scholar

[4] C. C. Finstad, G. Montaño-Miranda, A. G. Thorsness and A. J. Muscat: Rev. Sci. Instrum. 77 (2006), 093907-1.

Google Scholar

[5] B. Brennan, M. Milojevic, C. Hinkle, F. Aguirre-Tostado, G. Hughes and R. Wallace: Appl. Surf. Sci. 257 (2011), 4082.

DOI: 10.1016/j.apsusc.2010.11.179

Google Scholar

[6] S. McDonnell, H. Dong, J. M. Hawkins, B. Brennan, M. Milojevic, F. S. Aguirre-Tostado, D. M. Zhernokletov, C. L. Hinkle, J. Kim and R. M. Wallace: Appl. Phys. Lett. 100 (2012) 141606-1.

DOI: 10.1063/1.3700863

Google Scholar

[7] K. Shigyo, S. Umemura and M. Kinugawa: Electrochem. Soc. Proceedings 2004-06 (2004), 51.

Google Scholar

[8] H. C. Gatos and M. C. Lavine: J. Electrochem. Soc. 107 (1960) 427.

Google Scholar

[9] D. R. Lide, Ed. CRC Handbook of Chemistry & Physics, Online Edition, 94th ed. (CRC Press/Taylor and Francis Group: Boca Raton, FL, 2013).

DOI: 10.1021/ja077011d

Google Scholar

[10] C. D Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R. H Raymond, L.H. Gale:. Surf. Interface Anal. 3 (1981) 211.

Google Scholar

[11] S. Donev, N. Brack, N.J. Paris, P. J. Pigram, N. K. Singh and B. F. Usher: Langmuir 21 (2005), 1866.

DOI: 10.1021/la048191x

Google Scholar