Surface Recombination Velocity Imaging of HF-Etched Si Wafers Using Dynamic Heterodyne Lock-In Carrierography

Article Preview

Abstract:

Surface electronic quality of wet-cleaned Si wafers was characterized quantitatively and all-optically via spatially-resolved surface recombination velocity (SRV) imaging using InGaAs-camera-based dynamic heterodyne lock-in carrierography. Six samples undergone four different hydrofluoric special-solution etching conditions were tested, their SRV distributions at different queue times after the hydrogen passivation processes were obtained, and a quantitative assessment of their surface electronic quality was made based on the evolution behavior of globally-integrated information from the SRV images. The data acquisition time for an SRV image with full camera pixel resolution was about 3 min. The methodology introduced here is promising for in-line nondestructive testing/evaluation and quality control at different fabrication/manufacturing stages in the electronic industry. Keywords: heterodyne lock-in carrierography, surface recombination velocity, quantitative imaging, HF etching, Si wafers

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 282)

Pages:

13-18

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Melnikov, A. Mandelis, J. Tolev, P. Chen, and S. Huq, J. Appl. Phys. 107, 114513 (2010).

Google Scholar

[2] Q. M. Sun, A. Melnikov, and A. Mandelis, Appl. Phys. Lett. 101, 242107 (2012).

Google Scholar

[3] Q. M. Sun, A. Melnikov, and A. Mandelis, Int. J. Thermophys. 37, 45 (2016).

Google Scholar

[4] J. Y. Liu, A. Melnikov, and A. Mandelis, J. Appl. Phys. 114, 104509 (2013).

Google Scholar

[5] J. Y. Liu, A. Melnikov, and A. Mandelis, Phys. Status Solidi A 210, 2135 (2013).

Google Scholar

[6] L. L. Hu, M. X. Liu, A. Mandelis, A. Melnikov, and E. H. Sargent, Prog. Photovolt. Res. Appl. 25, 1034 (2017).

Google Scholar

[7] L. L. Hu, M. X. Liu, A. Mandelis, Q. M. Sun, A. Melnikov, and E. H. Sargent, Sol. Energy Mat. Sol. Cells 174, 405 (2018).

Google Scholar

[8] L. L. Hu, A. Mandelis, Z. Y. Yang, X. X. Guo, X. Z. Lan, M. X. Liu, G. Walters, A. Melnikov, and E. H. Sargent, Sol. Energy Mat. Sol. Cells 174, 405 (2018).

Google Scholar

[9] Q. M. Sun, A. Melnikov, and A. Mandelis, Proc IEEE PVSC 40, 1860 (2014).

Google Scholar

[10] Q. M. Sun, A. Melnikov, and A. Mandelis, Phys. Status Solidi A 213, 405 (2016).

Google Scholar

[11] Q. M. Sun, A. Melnikov, A. Mandelis, and R. H. Pagliaro, Appl. Phys. Lett. 112, 012105 (2018).

Google Scholar

[12] T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, Appl. Phys. Lett. 89, 044107 (2006).

DOI: 10.1063/1.2234747

Google Scholar

[13] J. A. Giesecke, R. A. Sinton, M. C. Schubert, S. Riepe, and W. Warta, IEEE J. Photovolt. 3, 1311 (2013).

Google Scholar

[14] A. Mandelis, Diffusion-Wave Fields, Springer 2001, chap. 9.

Google Scholar

[15] http://www.apet.co.kr.

Google Scholar

[16] W. van Roosbroeck and W. Shockley, Phys. Rev. 94, 1558 (1954).

Google Scholar

[17] Q. M. Sun, A. Melnikov, J. Wang, and A. Mandelis, J. Phys. D: Appl. Phys. 51, 15LT01 (2018).

Google Scholar

[18] S. P. Phang, H. C. Sio, and D. Macdonald, Appl. Phys. Lett. 103, 192112 (2013).

Google Scholar

[19] F. D. Heinz, J. A. Giesecke, L. E. Mundt, M. Kasemann, W. Warta, and M. C. Schubert, J. Appl. Phys. 118, 105706 (2015).

Google Scholar

[20] B. Lashkari, S. S. S. Choi, M. E. Khosroshahi, E. Dovlo, and A. Mandelis, Opt. Lett. 40, 1145 (2015).

Google Scholar