Industry Context for Semiconductor Wet Etch and Surface Preparation

Article Preview

Abstract:

The semiconductor industry is undergoing a transition driven by end use markets. In recent years, mobile devices have been the leading generator of growth. Now the connection of various products and machines to the internet is generating new and extensive demands for memory (storage of the data), logic (intelligent processing of the data including machine learning), and sensing (e.g., image sensors generating visual data). Thus the versatile planar MOS transistor based semiconductor technology has diverged into various specialized and complex branches, with each technology type using unique approaches to address scaling challenges. These lead to specific requirements for semiconductor wafer surface preparation. This paper will review the high level industry trends and how they affect surface preparation specifically.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 282)

Pages:

3-9

Citation:

Online since:

August 2018

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Digital in 2018: World's Internet Users Pass the 4 Billion Mark https://wearesocial.com/blog/2018/01/global-digital-report-(2018).

Google Scholar

[2] A. Sekiguchi, Technology Trends and an Outlook on Advanced Semiconductor Devices: STS Advanced Device Session (Semicon Japan, 2017).

Google Scholar

[3] W. C. Rhines, What Will Stimulate the Next Wave of Semiconductor Industry Growth?: (Confab, 2016).

Google Scholar

[4] C. Cakebread, People Will Take 1.2 Trillion Digital Photos This Year–Thanks to Smartphones: Business Insider, http://www.businessinsider.com Aug. 31 (2017).

Google Scholar

[5] McClean Report, IC Insights, http://www.icinsights.com (2018).

Google Scholar

[6] R.F. Freitas, and W.W. Wilcke: IBM J. Res. & Dev. 52, 4/5 (2008), p.439.

Google Scholar

[7] G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan, and R.S. Shenoy: IBM J. Res. & Dev., 52, 4/5 (2008), p.449.

Google Scholar

[8] M. J. Miller, Storage Class Memory: The Coming Revolution https://forwardthinking.pcmag.com/hard-drives/346999-storage-class-memory-the-coming-evolution.

Google Scholar

[9] A. Silvagni: Computers, 6 (2017), p.28.

Google Scholar

[10] K. Parat and C. Dennison: IEDM, IEEE (2015).

Google Scholar

[11] M. Lapedus, NAND Market Hits Speed Bump, https://semiengineering.com/nand-market-hits-speed-bump/ (2017).

Google Scholar

[12] A. Khakifirooz, K. Cheng, Q. Liu, T. Nagumo, N. Loubet, A. Reznicek, J. Kuss, J. Gimbert, R. Sreenivasan, M. Vinet, L. Grenouillet, Y. LeTiec, R. Wacquez, Z. Ren, J. Cai, D. Shahrjerdi, P. Kulkarni, S. Ponoth, S. Luning, and B. Doris, Proceedings, Custom Integrated Circuits Conference, IEEE (2012).

DOI: 10.1109/cicc.2012.6330618

Google Scholar

[13] W. P. Maszara, ECS Transactions, 85, 8 (2018), p.15.

Google Scholar

[14] IEEE Explore: ISSCC 2013 Plenary Keynoters Fast Forward to the Future: Industry Icon Tells VLSI and Scaling Back-Stories https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6532459.

DOI: 10.1109/mssc.2013.2254633

Google Scholar

[15] R. Merritt, TSMC's Roadmap Full, But Thin, EE Times www.eetimes.com/document.asp?doc_id=1333244.

Google Scholar

[16] E. Sperling, Is 7nm the Last Major Node?, Semiconductor Engineering https://semiengineering.com/7nm-last-major-node.

Google Scholar

[17] P. Besser, BEOL Interconnect Innovations for Improving Performance, NCCAVS Symposium, American Vacuum Society (2017).

Google Scholar

[18] T. Tanaka, M. Morigami, and N. Atoda: Jpn. J. Appl. Phys., 32 (1993), p.6059.

Google Scholar

[19] T. Watanabe, T. Toshima, M. Nakamori, K. Egashira, Y. Ido, N. Matsumoto, and T. Orii: ECS Transactions, 58, 6 (2013), p.191.

DOI: 10.1149/05806.0191ecst

Google Scholar

[20] T. Koide, S. Kimura, H. Iimori, T. Sugita, K. Sato, Y. Sato, and Y. Ogawa: ECS Transactions, 69, 8 (2015) p.131.

DOI: 10.1149/06908.0131ecst

Google Scholar

[21] M. J. Meziani, P. Pathak, Y.P. Sun, in Handbook of Semiconductor Manufacturing Technology, (CRC Press, Boca Raton, FL, USA, 2008).

Google Scholar

[22] R. F. Reidy, and J. L. Lauerhaas, in Handbook of Silicon Wafer Cleaning Technology, 3rd Ed., (William Andrew, Oxford, UK and Cambridge, MA, USA 2018).

Google Scholar

[23] D. W. Bassett, and A. L. P. Rotondaro: ECS Transactions, 80, 2 (2017), p.29.

Google Scholar

[24] X. M Xu, N. Vrancken, G. Vereecke, S. Suhard, G. Pourtois, and F. Holsteyns: Solid State Phenomena, 255 (2016), p.147.

DOI: 10.4028/www.scientific.net/ssp.255.147

Google Scholar

[25] K. J. Singh: Solid State Phenomena, 195 (2013), p.103.

Google Scholar

[26] D. W. Bassett, W. T. Printz, and T. Furukawa: ECS Transactions, 69, 8 (2015), 159.

Google Scholar

[27] C. Mbanaso, J. W. Butterbaugh, D. S. Becker, W. P. Printz, A.L.P. Rotondaro, D. W. Bassett, G. P. Thomes, B. D. Schwab, C. A. Rathman, and J. M. Lauerhaas, Solid State Phenomena, 255, p.195 (2016).

DOI: 10.4028/www.scientific.net/ssp.255.195

Google Scholar

[28] M. Aibara, K. Sekiguchi, M. Kaneko, D. Bassett, and I. Kanno, ECS Transactions, 80 (2), 43 (2017).

Google Scholar