Investigation on Bipolar Degradation Caused by Micropipe in 3.3 kV SiC-MOSFET

Article Preview

Abstract:

In this study, high current stress was applied to the body diode of SiC-MOSFETs, and chips exhibiting leakage current degradation due to the bipolar degradation phenomenon were analyzed to identify the crystal defects responsible for the abnormal leakage current. Failure analysis and defect inspection during the device fabrication process revealed that abnormal leakage occurred at the periphery of extended stacking faults originating from or near the micropipe itself. As these extended stacking faults also increase the forward voltage drop of MOSFETs, these results suggest that micropipe are critical defects in SiC-MOSFETs inducing both forward voltage and leakage current degradation in the bipolar degradation phenomenon.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] A. Galeckas, J. Linnros, and P. Pirouz, Appl. Phys. Lett., vol.81 (2002), p.883.

Google Scholar

[2] M. Skowronski and S. Ha, J. Appl. Phys., vol. 99 (2006) 011101.

Google Scholar

[3] A. Agarwal, H. Fatima, S. Haney, and S.-H. Ryu, IEE Electron Device Lett., vol. 28 (2007), p.587.

Google Scholar

[4] R. Stahlbush, Q. Zhang, A. Agarwal, and N. A. Mahadik, Mater. Sci. Forum, vol. 717-720 (2012), p.387.

Google Scholar

[5] S. A. Mancini, S. Y. Jang, Z. Chen, D. Kim, J. Lynch, Y. Liu, B. Raghothamachar, M. Kang, A. Agarwal, N. Mahadik, R. Stahlbush, M. Dudley, and W. Sung, Proc. IRPS 2022, pp.62-1

DOI: 10.1109/irps48227.2022.9764538

Google Scholar

[6] S. Yamamoto, Y. Nakao, N. Tomita, S. Nakata, and S. Yamakawa, Mater. Sci. Forum, vol. 778-780 (2014), p.951.

Google Scholar

[7] T. Ishigaki, T. Murata, K. Kinoshita, T. Morikawa, T. Oda, R. Fujita, K. Konishi, Y. Mori, and A. Shima, Proc. ISPSD 2019, p.259.

DOI: 10.1109/ispsd.2019.8757598

Google Scholar

[8] M. Uchida, N. Horikawa, K. Tanaka, K. Takahashi, T. Kiyosawa, M. Hayashi, M. Niwayama, O. Kusumoto, K. Adachi, C. Kudou, and M. Kitabatake, IEDM Tech. Dig., (2011), 26.6.1.

DOI: 10.1109/iedm.2011.6131620

Google Scholar

[9] T. Tawara, T. Miyazawa, M. Ryo, M. Miyazato, T. Fujimoto, K. Takenaka, S. Matsunaga, M. Miyajima, A. Otsuki, Y. Yonezawa, T. Kato, H. Okumura, T. Kimoto, and H. Tsuchida, J. Appl. Phys., vol. 120 (2016), pp.115101-1.

DOI: 10.1063/1.4962717

Google Scholar

[10] S. Hino, H. Hatta, K. Sadamatsu, Y. Nagahisa, S. Yamamoto, T. Iwamatsu, Y. Yamamoto, M. Imaizumi, S. Nakata, and S. Yamakawa, Mater. Sci. Forum, vol. 897 (2017), p.477.

DOI: 10.4028/www.scientific.net/msf.897.477

Google Scholar

[11] Y. Ebihara, J. Uehara, A. Ichimura, S. Mitani, M. Noborio, Y. Takeuchi, and K. Tsuruta, Proc. ISPSD 2019, p.35.

Google Scholar

[12] K. Ishibashi, H. Amishiro, T. Tanaka, N. Tomita, A. Imai, Y. Nakao, H. Watanabe, Y. Kagawa, and A. Furukawa, Proc. PCIM Europe 2023, p.167.

Google Scholar

[13] M. Kato, O. Watanabe, T. Mii, H. Sakane, and S. Harada, Sci. Rep., vol. 12 (2022) 18790.

Google Scholar

[14] R. Stahlbush, N. Mahadik, P. Bonanno, J. Soto, B. Odekirk, W. Sung, and A. Agarwal, Proc. IRPS 2022, pp.65-1

DOI: 10.1109/irps48227.2022.9764473

Google Scholar

[15] K. Konishi, S. Yamamoto, S. Nakata, Y. Nakanishi, T. Tanaka, Y. Mitani, N. Tomita, Y. Toyoda, and S. Yamakawa, J. Appl. Phys., vol. 114 (2013), p.014504.

Google Scholar