Characterization of Interface Trap and Mobility Degradation in SiC MOS Devices Using Gated Hall Measurements

Article Preview

Abstract:

Gated Hall measurements are conducted to calculate interface trap density of a nitric oxide (NO) annealed 4H silicon carbide (4H-SiC) MOSFET. The free carriers are measured using split CV method. Application of body bias confirms that the total trap quantity does not change at the interface when changing the electric field through body bias for a given device. The effect of positive gate stress on Hall mobility is also studied. A stress voltage of +36 V is applied for different stress times (0, 10, 30, 100, and 300 sec). With the increased stress time, the Hall mobility value drops at low gate voltages, while at higher gate voltages they merge. Higher stress creates more interface traps that in turn increase Coulomb scattering which lowers mobility at low gate voltages. The effect of gate stress on Hall mobility provides accurate insight of the channel behavior due to interface traps at 4H-SiC / SiO2 interface.

You have full access to the following eBook

Info:

Periodical:

Solid State Phenomena (Volume 375)

Pages:

49-53

Citation:

Online since:

September 2025

Export:

Share:

Citation:

* - Corresponding Author

[1] G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, Robert A. Weller, S. T. Pantelides, Leonard C. Feldman, O. W. Holland, M. K. Das, and John W. Palmour, "Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide," in IEEE Electron Device Letters, vol. 22, no. 4, pp.176-178, April (2001).

DOI: 10.1109/55.915604

Google Scholar

[2] J. Rozen, A. C. Ahyi, Z. Xingguang, J. R. Williams, and L. C. Feldman, IEEE Trans. Electron Devices 58(11), 3808–3811 (2011).

DOI: 10.1109/ted.2011.2164800

Google Scholar

[3] D. J. Lichtenwalner, L. Cheng, S. Dhar, A. Agarwal, and J. W. Palmour, Appl. Phys. Lett. 105, 182107 (2014).

Google Scholar

[4] X. Yang, B. Lee, and V. Misra, "Effect of post deposition annealing for high mobility 4H-SiC MOSFET utilizing lanthanum silicate and atomic layer deposited SiO2," in the 2nd IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 2014.

DOI: 10.1109/wipda.2014.6964637

Google Scholar

[5] K. Tachiki and T. Kimoto, "Improvement of Both n- and p-Channel Mobilities in 4H-SiC MOSFETs by High-Temperature N₂ Annealing," in IEEE Transactions on Electron Devices, vol. 68, no. 2, pp.638-644, (2021).

DOI: 10.1109/ted.2020.3040207

Google Scholar

[6] S. Das, H. Gu, L. Wang, A. Ahyi, L. C. Feldman, E. Garfunkel, M. A. Kuroda, S. Dhar; Trap passivation of 4H-SiC/SiO2 interfaces by nitrogen annealing. J. Appl. Phys. 7 June 2023; 133 (21): 215701.

DOI: 10.1063/5.0139185

Google Scholar

[7] M. Okamoto, Y. Makifuchi, M. Iijima, Y. Sakai, N. Iwamuro, H. Kimura, K. Fukuda, and H. Okumura, Appl. Phys. Express 5(4), 041302 (2012).

DOI: 10.1143/apex.5.041302

Google Scholar

[8] A. Modic, G. Liu, A. C. Ahyi, Y. M. Zhou, P. Y. Xu, M. C. Hamilton, J. R. Williams, L. C. Feldman, and S. Dhar, IEEE Electron Device Lett. 35(9), 894–896 (2014).

DOI: 10.1109/led.2014.2336592

Google Scholar

[9] M. E. Bathen, C. T.-K. Lew, J. Woerle,1 C. Dorfer, U. Grossner, S. Castelletto, and B. C. Johnson, Characterization methods for defects and devices in silicon carbide, J. Appl. Phys. 131, 140903 (2022).

DOI: 10.1063/5.0077299

Google Scholar

[10] M. Noguchi, T. Watanabe, H. Watanabe, and N. Miura., Comparative Study of Hall Effect Mobility in Inversion Layer of 4H-SiC MOSFETs with Nitrided and Phosphorus-doped gate Oxides, IEEE Trans. Elec. Dev., 68, 12, (2021).

DOI: 10.1109/ted.2021.3125284

Google Scholar

[11] S. Das, Y. Zheng, A Ahyi, M. A. Kuroda, and S. Dhar, Study of carrier mobilities in 4H-SiC MOSFETS using Hall analysis, MDPI Materials, 15, 19 (2022).

DOI: 10.3390/ma15196736

Google Scholar

[12] S. Das, T. Isaacs-Smith, A Ahyi, MA Kuroda, S Dhar, High temperature characteristics of nitric oxide annealed p-channel 4H-SiC metal oxide semiconductor field effect transistors, JAP 130, 22 (2021).

DOI: 10.1063/5.0073523

Google Scholar

[13] J. Berens; T. Aichinger, A straightforward electrical method to determine screening capability of GOX extrinsics in arbitrary, commercially available SiC MOSFETs, IEEE IRPS, pp.1-5 (2021).

DOI: 10.1109/irps46558.2021.9405152

Google Scholar

[14] A. K. Biswas, D. J. Lichtenwalner, S. Das, C. Isaacson, S. Ganguly, D. A. Gajewski, Effects of High Gate Voltage Stress on Threshold Voltage Stability in Planar and Trench SiC Power MOSFETs, Solid State Phenomena, 1662-9779, 358 (2023).

DOI: 10.4028/p-02ncko

Google Scholar