[1]
G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, Robert A. Weller, S. T. Pantelides, Leonard C. Feldman, O. W. Holland, M. K. Das, and John W. Palmour, "Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide," in IEEE Electron Device Letters, vol. 22, no. 4, pp.176-178, April (2001).
DOI: 10.1109/55.915604
Google Scholar
[2]
J. Rozen, A. C. Ahyi, Z. Xingguang, J. R. Williams, and L. C. Feldman, IEEE Trans. Electron Devices 58(11), 3808–3811 (2011).
DOI: 10.1109/ted.2011.2164800
Google Scholar
[3]
D. J. Lichtenwalner, L. Cheng, S. Dhar, A. Agarwal, and J. W. Palmour, Appl. Phys. Lett. 105, 182107 (2014).
Google Scholar
[4]
X. Yang, B. Lee, and V. Misra, "Effect of post deposition annealing for high mobility 4H-SiC MOSFET utilizing lanthanum silicate and atomic layer deposited SiO2," in the 2nd IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 2014.
DOI: 10.1109/wipda.2014.6964637
Google Scholar
[5]
K. Tachiki and T. Kimoto, "Improvement of Both n- and p-Channel Mobilities in 4H-SiC MOSFETs by High-Temperature N₂ Annealing," in IEEE Transactions on Electron Devices, vol. 68, no. 2, pp.638-644, (2021).
DOI: 10.1109/ted.2020.3040207
Google Scholar
[6]
S. Das, H. Gu, L. Wang, A. Ahyi, L. C. Feldman, E. Garfunkel, M. A. Kuroda, S. Dhar; Trap passivation of 4H-SiC/SiO2 interfaces by nitrogen annealing. J. Appl. Phys. 7 June 2023; 133 (21): 215701.
DOI: 10.1063/5.0139185
Google Scholar
[7]
M. Okamoto, Y. Makifuchi, M. Iijima, Y. Sakai, N. Iwamuro, H. Kimura, K. Fukuda, and H. Okumura, Appl. Phys. Express 5(4), 041302 (2012).
DOI: 10.1143/apex.5.041302
Google Scholar
[8]
A. Modic, G. Liu, A. C. Ahyi, Y. M. Zhou, P. Y. Xu, M. C. Hamilton, J. R. Williams, L. C. Feldman, and S. Dhar, IEEE Electron Device Lett. 35(9), 894–896 (2014).
DOI: 10.1109/led.2014.2336592
Google Scholar
[9]
M. E. Bathen, C. T.-K. Lew, J. Woerle,1 C. Dorfer, U. Grossner, S. Castelletto, and B. C. Johnson, Characterization methods for defects and devices in silicon carbide, J. Appl. Phys. 131, 140903 (2022).
DOI: 10.1063/5.0077299
Google Scholar
[10]
M. Noguchi, T. Watanabe, H. Watanabe, and N. Miura., Comparative Study of Hall Effect Mobility in Inversion Layer of 4H-SiC MOSFETs with Nitrided and Phosphorus-doped gate Oxides, IEEE Trans. Elec. Dev., 68, 12, (2021).
DOI: 10.1109/ted.2021.3125284
Google Scholar
[11]
S. Das, Y. Zheng, A Ahyi, M. A. Kuroda, and S. Dhar, Study of carrier mobilities in 4H-SiC MOSFETS using Hall analysis, MDPI Materials, 15, 19 (2022).
DOI: 10.3390/ma15196736
Google Scholar
[12]
S. Das, T. Isaacs-Smith, A Ahyi, MA Kuroda, S Dhar, High temperature characteristics of nitric oxide annealed p-channel 4H-SiC metal oxide semiconductor field effect transistors, JAP 130, 22 (2021).
DOI: 10.1063/5.0073523
Google Scholar
[13]
J. Berens; T. Aichinger, A straightforward electrical method to determine screening capability of GOX extrinsics in arbitrary, commercially available SiC MOSFETs, IEEE IRPS, pp.1-5 (2021).
DOI: 10.1109/irps46558.2021.9405152
Google Scholar
[14]
A. K. Biswas, D. J. Lichtenwalner, S. Das, C. Isaacson, S. Ganguly, D. A. Gajewski, Effects of High Gate Voltage Stress on Threshold Voltage Stability in Planar and Trench SiC Power MOSFETs, Solid State Phenomena, 1662-9779, 358 (2023).
DOI: 10.4028/p-02ncko
Google Scholar