Analysis of Lattice Damage in 4H-SiC Epiwafers Implanted with High Energy Al Ions with Silicon Energy-Filter for Ion Implantation

Article Preview

Abstract:

Multi-step high energy ion implantation enables uniform doping to depths up to 12 µm in 4H-SiC epiwafers for superjunction devices but extent of lattice damage is of significant concern for device fabrication. 4H-SiC wafers with 12 µm thick epilayers implanted with Al ions at a concentration of 5 x 1016 cm-3 using the Tandem Van de Graaff accelerator at Brookhaven National Laboratory across an energy range of 13.8 to 65.7 MeV and at different temperatures: room temperature, 300 °C, and 600 °C were analyzed by reciprocal space mapping measurements. Implanted layers exhibited tensile strains that decreased with increasing implantation temperature indicating dynamic annealing effect reduces lattice damage. On annealing at 1700 °C, for recovery of the lattice strain, RSM measurements show that the highest implantation temperatures have the lowest residual strains. In addition, the use of a Silicon Energy-Filter for Ion Implantation (EFII) for Al implantation in a single stage to the depth of 15µm is found to further reduce lattice strain compared to wafers implanted without EFII to the same doping concentration. This preliminary study will assist in optimizing the implantation and annealing conditions for the development of superjunction devices.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] A.A. Lebedev and V.E. Chelnokov, Semiconductors 33, 999–1001 (1999).

Google Scholar

[2] T. Liu, S. Hu, J. Wang, G. Guo, J. Luo, Y. Wang, J. Guo and Y. Huo, IEEE Access, 7 145118-145123. (2019)

DOI: 10.1109/access.2019.2944991

Google Scholar

[3] P. Thieberger, C. Carlson, D. Steski, R. Ghandi, A. Bolotnikov, D. Lilienfeld, P. Losee, Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 442 36-40. (2019)

DOI: 10.1016/j.nimb.2019.01.016

Google Scholar

[4] R. Ghandi, A. Bolotnikov, S. Kennerly, C. Hitchcock, P.-m. Tang, T.P. Chow, 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), IEEE, 126-129 (2020)

DOI: 10.1109/ispsd46842.2020.9170171

Google Scholar

[5] Z. Chen, Y. Liu, H. Peng, Q. Cheng, S. Hu, B. Raghothamachar, M. Dudley, R. Ghandi, S. Kennerly and P. Thieberger, ECS J. Solid State Sci. Technol. 11 065003 (2022)

DOI: 10.1149/2162-8777/ac7351

Google Scholar

[6] A. Yu. Kuznetsov, J. Wong-Leung, A. Hallen, C. Jagadish, and B. G. Svensson, Journal of Applied Physics 94, 7112 (2003)

Google Scholar

[7] S. Mancini, S. Jang, Z. Chen, D. Kim, Y. Liu, B. Raghothamachar, M. Kang, A. Agarwal, N. Mahadik, R. Stahlbush, M. Dudley, W. Sung, proceeding of 2022 IEEE International Reliability Physics Symposium (IRPS) (2022)

DOI: 10.1109/irps48227.2022.9764538

Google Scholar

[8] Z. Chen, H. Peng, Y. Liu, Q. Cheng, S. Hu, B. Raghothamachar, M. Dudley, R. Ghandi, S. Kennerly and P. Thieberger, Materials Science Forum 1062, 361-365 (2022)

DOI: 10.4028/p-m7sftq

Google Scholar

[9] Z. Chen, Y. Liu, Q. Cheng, S. Hu, B. Raghothamachar, R. Ghandi, S. Kennerly, C. Carlson, D. Steski, M. Dudley, Defect and Diffusion Forum 434, 87-92. (2024)

DOI: 10.4028/p-hody82

Google Scholar

[10] T. Steinbach , C. Csato, F. Krippendordf, F. Letzkus, M. Rüb, J.N. Burghartz, Microelectronic Engineering 222 (2020) 111203

DOI: 10.1016/j.mee.2019.111203

Google Scholar

[11] Z. Chen, Y. Liu, Q. Cheng, S. Hu, B. Raghothamachar and M. Dudley, Journal of Crystal Growth 627, 127535(2024)

Google Scholar