Optimization of Gate Oxide Screening Technology for Commercial SiC Discrete MOSFETs and Power Modules

Article Preview

Abstract:

This study demonstrates a negative correlation between gate leakage current () and time to breakdown () of gate oxide in various commercial SiC discrete MOSFETs and power modules. SiC MOSFETs with higher leakage current at the same gate voltage exhibit lower oxide failure time in the constant-voltage Time-Dependent Dielectric Breakdown (TDDB) test. The novelty lies in the discovery that measured under conditions of either low gate voltage () at RT or high at 150°C can be utilized to identify discrete devices or power modules with non-infant failures or lower intrinsic lifetime. Aggressive screening based on helps to reduce non-infant extrinsic failure probability and identify devices with more uniformity of intrinsic lifetime.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] T. Aichinger, M. Schmidt, Gate-oxide reliability and failure-rate reduction of industrial SiC MOSFETs, in: 2020 IEEE International Reliability Physics Symposium (IRPS), IEEE, Dallas, TX, USA, 2020: p.1–6.

DOI: 10.1109/IRPS45951.2020.9128223

Google Scholar

[2] T. Liu, S. Zhu, M. Jin, L. Shi, M.H. White, A.K. Agarwal, Impacts of Area-Dependent Defects on the Yield and Gate Oxide Reliability of SiC Power MOSFETs, in: 2021 IEEE 8th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), IEEE, Redondo Beach, CA, USA, 2021: p.5–8.

DOI: 10.1109/WiPDA49284.2021.9645099

Google Scholar

[3] H. Miki, M. Sagawa, Y. Mori, T. Murata, K. Kinoshita, K. Asaka, T. Oda, Accurate screening of defective oxide on SiC using consecutive multiple threshold-voltage measurements, in: 2022 IEEE International Reliability Physics Symposium (IRPS), 2022: p. 8B.2-1-8B.2–7.

DOI: 10.1109/IRPS48227.2022.9764583

Google Scholar

[4] J. Berens, T. Aichinger, A straightforward electrical method to determine screening capability of GOX extrinsics in arbitrary, commercially available SiC MOSFETs, in: 2021 IEEE International Reliability Physics Symposium (IRPS), 2021: p.1–5.

DOI: 10.1109/IRPS46558.2021.9405152

Google Scholar

[5] Y. Zheng, R. Potera, T. Witt, Characterization of Early Breakdown of SiC MOSFET Gate Oxide by Voltage Ramp Tests, in: 2021 IEEE International Reliability Physics Symposium (IRPS), IEEE, Monterey, CA, USA, 2021: p.1–5.

DOI: 10.1109/IRPS46558.2021.9405196

Google Scholar

[6] L. Shi, T. Liu, S. Zhu, J. Qian, M. Jin, H.L.R. Maddi, M.H. White, A.K. Agarwal, Effects of Oxide Electric Field Stress on the Gate Oxide Reliability of Commercial SiC Power MOSFETs, in: 2022 IEEE 9th Workshop on Wide Bandgap Power Devices & Applications (WiPDA), IEEE, Redondo Beach, CA, USA, 2022: p.45–48.

DOI: 10.1109/WiPDA56483.2022.9955295

Google Scholar

[7] L. Shi, S. Zhu, J. Qian, M. Jin, M. Bhattacharya, M.H. White, A.K. Agarwal, A. Shimbori, T. Liu, Investigation of different screening methods on threshold voltage and gate oxide lifetime of SiC Power MOSFETs, in: 2023 IEEE International Reliability Physics Symposium (IRPS), IEEE, Monterey, CA, USA, 2023: p.1–7.

DOI: 10.1109/IRPS48203.2023.10118276

Google Scholar

[8] L. Shi, J. Qian, M. Jin, M. Bhattacharya, H. Yu, M.H. White, A.K. Agarwal, A. Shimbori, Evaluation of Burn-in Technique on Gate Oxide Reliability in Commercial SiC MOSFETs, in: 2024 IEEE International Reliability Physics Symposium (IRPS), IEEE, Grapevine, TX, USA, 2024: p.1–6.

DOI: 10.1109/IRPS48228.2024.10529373

Google Scholar

[9] Z. Chbili, A. Matsuda, J. Chbili, J.T. Ryan, J.P. Campbell, M. Lahbabi, D.E. Ioannou, K.P. Cheung, Modeling Early Breakdown Failures of Gate Oxide in SiC Power MOSFETs, IEEE Trans. Electron Devices 63 (2016) 3605–3613.

DOI: 10.1109/TED.2016.2586483

Google Scholar

[10] M. Lenzlinger, E.H. Snow, Fowler-Nordheim tunneling into thermally grown SiO2, IEEE Transactions on Electron Devices 15 (1968) 686–686.

DOI: 10.1109/T-ED.1968.16430

Google Scholar

[11] P. Moens, J. Franchi, J. Lettens, L.D. Schepper, M. Domeij, F. Allerstam, A Charge-to-Breakdown (Q BD ) Approach to SiC Gate Oxide Lifetime Extraction and Modeling, in: 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), IEEE, Vienna, Austria, 2020: p.78–81.

DOI: 10.1109/ISPSD46842.2020.9170097

Google Scholar

[12] J. Qian, L. Shi, M. Jin, M. Bhattacharya, A. Shimbori, H. Yu, S. Houshmand, M.H. White, A.K. Agarwal, Modeling of Charge-to-Breakdown with an Electron Trapping Model for Analysis of Thermal Gate Oxide Failure Mechanism in SiC Power MOSFETs, Materials 17 (2024) 1455.

DOI: 10.3390/ma17071455

Google Scholar

[13] J. Qian, L. Shi, M. Jin, M. Bhattacharya, H. Yu, M.H. White, A.K. Agarwal, A. Shimbori, Z. Xu, Investigation of the Constant Current Stress for Charge-to-breakdown Extraction in Commercial SiC Power MOSFETs, in: 2023 IEEE 10th Workshop on Wide Bandgap Power Devices & Applications (WiPDA), IEEE, Charlotte, NC, USA, 2023: p.1–4.

DOI: 10.1109/WiPDA58524.2023.10382231

Google Scholar

[14] S. Zhu, T. Liu, L. Shi, M. Jin, H.L.R. Maddi, M.H. White, A.K. Agarwal, Comparison of Gate Oxide Lifetime Predictions with Charge-to-Breakdown Approach and Constant-Voltage TDDB on SiC Power MOSFET, in: 2021 IEEE 8th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), IEEE, Redondo Beach, CA, USA, 2021: p.1–4.

DOI: 10.1109/WiPDA49284.2021.9645100

Google Scholar

[15] W. Weibull, A Statistical Distribution Function of Wide Applicability, Journal of Applied Mechanics 18 (1951) 293–297.

DOI: 10.1115/1.4010337

Google Scholar

[16] L. Shi, J. Qian, M. Jin, M. Bhattacharya, H. Yu, A. Shimbori, M.H. White, A.K. Agarwal, Investigation on gate oxide reliability under gate bias screening for commercial SiC planar and trench MOSFETs, Materials Science in Semiconductor Processing 174 (2024) 108194.

DOI: 10.1016/j.mssp.2024.108194

Google Scholar

[17] L. Shi, J. Qian, M. Jin, M. Bhattacharya, H. Yu, M.H. White, A.K. Agarwal, A. Shimbori, Z. Xu, An Effective Screening Technique for Early Oxide Failure in SiC Power MOSFETs, in: 2023 IEEE 10th Workshop on Wide Bandgap Power Devices & Applications (WiPDA), IEEE, Charlotte, NC, USA, 2023: p.1–4.

DOI: 10.1109/WiPDA58524.2023.10382194

Google Scholar