Dynamic Switching Energy Monitoring during Gate Switching Stress to Evaluate Performance Degradation in Hard Switching Electric Power Conversion Systems

Article Preview

Abstract:

In addition to the well-known bias temperature instability (BTI) phenomena, recently, it has been revealed that SiC MOSFETs show another instability during high-frequency repetitive switching between VGS(L) and VGS(H), referred to as gate-switching instability (GSI). This study shows the increase in switching energy caused by gate-switching instability VGS(th) drift as key performance parameters in electric power conversion systems, especially, when operating in hard-switching mode. A new methodology based on double pulse test was applied at each readout. The results highlighted the significance of the degradation mechanism through its impact on hard-switching applications with high-switching frequency. Therefore ruggedness against GSI plays a pivotal role in the long-term reliable operation of SiC MOSFET devices to ensure durable and efficient power conversion systems.

You have full access to the following eBook
You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] J.A. Cooper et al. "Status and prospects for SiC power MOSFETs". In: IEEE Transactions on Electron Devices 49.4 (Apr. 2002), p.658–664. ISSN: 00189383.

DOI: 10.1109/16.992876

Google Scholar

[2] D.K. Schroder. "Bias temperature instability in silicon carbide". In: 2009 International Semiconductor Device Research Symposium. 2009 International Semiconductor Device Research Symposium (ISDRS 2009). College Park, MD: IEEE, Dec. 2009, p.1–2. ISBN: 978-1-4244- 6030-4.

DOI: 10.1109/ISDRS.2009.5378170

Google Scholar

[3] Z. Chbili et al. "Unusual bias temperature instability in SiC DMOSFET". In: 2013 IEEE International Integrated Reliability Workshop Final Report. 2013 IEEE International Integrated Reliability Workshop (IIRW). South Lake Tahoe, CA, USA: IEEE, Oct. 2013, p.90–93. ISBN: 978-1-4799-0352-8 978-1-4799-0350-4 978-1-4799-0351-1. DOI: 10 . 1109 / IIRW . 2013 . 6804166.

DOI: 10.1109/iirw.2013.6804166

Google Scholar

[4] Maximilian W. Feil et al. "Towards Understanding the Physics of Gate Switching Instability in Silicon Carbide MOSFETs". In: 2023 IEEE International Reliability Physics Symposium (IRPS). 2023 IEEE International Reliability Physics Symposium (IRPS). ISSN: 1938-1891. Mar. 2023, p.1–10.

DOI: 10.1109/IRPS48203.2023.10117740

Google Scholar

[5] Maximilian W. Feil et al. "Recent Developments in Understanding the Gate Switching Instability in Silicon Carbide MOSFETs". In: 2023 IEEE International Integrated Reliability Workshop (IIRW). 2023 IEEE International Integrated Reliability Workshop (IIRW). South Lake Tahoe, CA, USA: IEEE, Oct. 8, 2023, p.1–9. ISBN: 9798350327274. DOI: 10.1109/IIRW59383. 2023.10477632.

DOI: 10.1109/iirw59383.2023.10477632

Google Scholar

[6] Maximilian W. Feil et al. "Gate Switching Instability in Silicon Carbide MOSFETs—Part I: Experimental". In: IEEE Transactions on Electron Devices 71.7 (July 2024), p.4210–4217. ISSN: 0018-9383, 1557-9646.

DOI: 10.1109/TED.2024.3397636

Google Scholar

[7] Tibor Grasser et al. "Gate Switching Instability in Silicon Carbide MOSFETs—Part II: Modeling". In: IEEE Transactions on Electron Devices 71.7 (July 2024), p.4218–4226. ISSN: 0018-9383, 1557-9646.

DOI: 10.1109/TED.2024.3397629

Google Scholar

[8] Jaume Roig et al. "A Physics-Oriented Analysis of SiC Trench MOSFETs Under Gate Switching Stress Test Conditions". In: 2024 36th International Symposium on Power Semiconductor Devices and ICs (ISPSD). 2024 36th International Symposium on Power Semiconductor Devices and ICs (ISPSD). Bremen, Germany: IEEE, June 2, 2024, p.100–103. ISBN: 9798350394825.

DOI: 10.1109/ISPSD59661.2024.10579599

Google Scholar

[9] Huaping Jiang et al. "Dynamic Gate Stress Induced Threshold Voltage Drift of Silicon Carbide MOSFET". In: IEEE Electron Device Letters 41.9 (Sept. 2020), p.1284–1287. ISSN: 0741- 3106, 1558-0563.

DOI: 10.1109/LED.2020.3007626

Google Scholar

[10] Amartya K. Ghosh et al. "Comparison of AC and DC BTI in SiC Power MOSFETs". In: 2022 IEEE International Reliability Physics Symposium (IRPS). 2022 IEEE International Reliability Physics Symposium (IRPS). Dallas, TX, USA: IEEE, Mar. 2022, 7A.2–1–7A.2–6. ISBN: 978- 1-66547-950-9.

DOI: 10.1109/IRPS48227.2022.9764494

Google Scholar

[11] Sven Thiele et al. "Gate Switching Instability of SiC MOSFETs under Simultaneously High Drain-Source Voltage and High Frequency Acceleration". In: 2024 36th International Symposium on Power Semiconductor Devices and ICs (ISPSD). 2024 36th International Symposium on Power Semiconductor Devices and ICs (ISPSD). Bremen, Germany: IEEE, June 2, 2024, p.136–139. ISBN: 9798350394825.

DOI: 10.1109/ISPSD59661.2024.10579621

Google Scholar

[12] M. Sievers et al. "Monitoring of parameter stability of SiC MOSFETs in real application tests". In: Microelectronics Reliability 114 (Nov. 2020), p.113731. ISSN: 00262714. DOI: 10.1016/ j.microrel.2020.113731.

DOI: 10.1016/j.microrel.2020.113731

Google Scholar

[13] JEDEC. "Guideline for Evaluating Gate Switching Instability of Silicon Carbide Metal-Oxide- Semiconductor Devices for Power Electronic Conversion". In: JEDEC, Feb. 1, 2023.

Google Scholar

[14] "Guidelines for CoolSiC™ MOSFET gate drive voltage window". In: Nov. 17, 2023.

Google Scholar