Key Engineering Materials Vols. 306-308

Paper Title Page

Abstract: In this study, a manufacturing process for glass fiber reinforced plastics (GFRP) laminates was developed to improve volume fraction of fibers and mechanical properties. The manufacturing process is combination with wet lay-up and vacuum curing under atmosphere pressure for production of large and complicated structure as a leisure boat and so on. Several kinds of GFRP laminates were produced to consider optimum conditions of the process from viewpoint of volume fraction of fibers and mechanical properties. Volume fractions of fibers in GFRP laminates were measured and cross sections were observed by an optical microscope. The volume fraction in the GFRP laminate made by the suggested method was improved to 41 %, although the one made by conventional wet lay-up method was 17.7 %. Because a lot of large voids included in the laminates were drastically decreased due to the methods. For each laminate, three-point bending test was performed to measure elastic modulus and fracture toughness. Elastic modulus was improved from 5.39 GPa to 8.91 GPa with high volume fractions of fibers. Fracture toughness was improved from 8.19 MPa m1/2 to 16.6 MPa m1/2. Therefore, it was obtained that the method combined with wet lay-up and vacuum curing is easy process for manufacturing large and complicated structure to improve excellent mechanical properties and accuracy of structural shape.
845
Abstract: In these days, large-scale wind turbines are being made of the Glass Fiber Reinforced Plastic (hereinafter F.R.P). Some reinforcement stiffeners such as carbon fiber and polyamide (Kevlar) are not economical for the wind turbine. In addition, the steel or aluminum alloy, featuring heavy weight and metallic fatigue load, is not suitable for global use, except very small-scale wind turbines. In this study, we manufactured a 10kW-grade small Rotor Blade with the F. R. P featuring high stiffness and good dynamic behavior characteristic, and carried out experiments for understanding the bending behavior characteristic of the fatigue load and bending load. And, we examined the experiment results through the Finite Element Method. We compared the experiment results and FEM analysis outputs using the commercial ANSYS FEM program.
851
Abstract: The effect of manganese on strength and fracture toughness was investigated using five kinds of Mg-6Al-1Zn alloys. From the experimental results, the yield strength increased with increasing in manganese content until manganese content reached 0.14 wt. %. On the other hand, further increase in yield strength was not observed in case larger than 0.14 % of manganese was added. In addition, fracture toughness decreases with increasing manganese content. Fracture of magnesium alloy was ductile fracture by void coalescence. Adding excessive amount of manganese caused the increase in the presence of inclusions. This kind of particle easily became the nucleus of microvoid. As a conclusion, manganese should be added so that coarse manganese-bearing particle is not formed. Thus, 0.14 wt. % of manganese should be added to Mg-6Al-1Zn alloy in order to develop the alloy with well-balanced relationship between strength and fracture toughness.
857
Abstract: Magnesium alloys are very attractive materials for applying to the development of automobile parts or electric goods where a lightweight and a higher strength need. Due to higher ratio of strength vs. weight and stiffness vs. weight, various magnesium alloys are well applied in much weight saving design applications though an extrusion or a die-casting process. However, for the requisites of higher strength and weight savings, some new fabrication processes has been and it can be realized though the aid of the injection molding technology. To obtain the parametric data based upon the injection molding process, various experiments were executed for AZ91D magnesium alloy. This research proposes the optimum condition of an injection temperature, the first and the second pressure. The process was lined-up successfully often changing the injection unit and the hydraulic unit from the conventional plastic injection machine.
863
Abstract: Cast austenitic stainless steel piping pump, valve casings and elbows are susceptible to reductions in toughness and ductility because of long term exposure at the operating temperatures in the LWR (light water reactor). In this study, the three classes of thermally aged CF-8A cast austenitic stainless steel specimens were prepared using an artificially accelerated aging method for 0, 2,679 and 3,572 hours at 400oC. An indentation technique was applied to evaluate of the thermal aging of CF-8A cast austenitic stainless steel. We have performed indentation tests (automated ball indentation and nano-indentation) and EDS (energy dispersive spectroscopy) in order to characterize the micro-structural changes of the phase with aging. The fracture toughness of aged CF-8A cast stainless steel was determined by standard fracture toughness tests and automated ball indentation techniques.
869
Abstract: Various compositions of magnesium-copper-zinc (MgCuZn) ferrites were prepared via a co-precipitation method for the development of ternary property-composition diagrams. The diagrams were used to investigate the effect of various main components (MgO, CuO and ZnO) on the electromagnetic properties of MgCuZn ferrites system. Four electromagnetic properties were measured. These are initial permeability, quality factor, loss factor and resistivity. Analysis of the diagrams indicated that high MgO content was associated with the deterioration of the electromagnetic properties. Too much CuO led to the formation of Cu-rich precipitates that were detrimental to the electromagnetic properties. High ZnO content was necessary to obtain good magnetic properties of the ferrites. Hence, it was suggested that good electromagnetic properties on MgCuZn ferrites were attributed to low MgO, moderate CuO and high ZnO contents.
875
Abstract: There are increasing calls for more accurate power loss measurements in electrical steels. This paper presents the flux controlling technique in electrical steels using digital feedback technique. The various parameters that affect the measuring efficiency have also been analyzed. Digital feedback technique is used since it has the advantages of good reproducibility of the waveform due to ease of calibration and its stability with respect to time as well as reduces human error. Furthermore, it has no oscillation of the control system compared to the analog feedback technique. This technique was designed by using Simulink, MATLAB R12, Version 6.0. The digital feedback circuitry, which has been designed, is proved to be successful where the output waveform is a sinusoidal waveform of 50Hz. It is shown that the harmonic component increases as the distortion factor increases. It also indicates that the average distortion factor for nth harmonic to the distorted waveform is typically less than 1.5 and meaningful measurements can be performed.
881
Abstract: Boronizing is a method to increase the surface hardness of engineering components [1]. This is beneficial especially when the components are always in surface contact with other materials. In this study, boronizing treatment was successfully done on duplex stainless steel (DSS). Two types of DSS with different microstructure were boronized – the as-received DSS and the fine grain DSS. The morphology of boride layer formed on boronized DSS is compact and smooth. The boride layer thickness for both DSS ranged from 9 to 32 +m. Depending on boronizing time and temperature, the hardness of boronized fine grain DSS is between 1014 HV to 2601 HV. The values are higher than that of the as-received DSS which is between 797 HV to 2311 HV. The result shows that there is a different in hardness of boride layer for two different grain sizes of DSS although the layer thickness formed is about the same in depth.
887
Abstract: Aluminium-silicon alloys having different silicon contents (13, 20 and 27 percent) were used in the present study. The molten alloys were poured in to a mild steel die to cast tensile test bars. Then tensile and hardness tests were performed in order to analyze the properties and fracture surfaces of the cast specimens. Results show that as silicon content increases, the alloy becomes harder and less ductile. At the same time, the presence of alloying and impurity elements in the alloys forms complex compounds and intermetallic phases. They present deleterious effects on the strength of the alloys, causing a lowering of the energy required to fracture the test specimens with little permanent extension. However, heat treatment operations altered the structures and properties of the aluminium-silicon alloys. Heating to higher temperature, then quenching, ageing and tempering make the alloys stronger up to 13% silicon and beyond that limit the alloys become weaker, fracturing at lower load. The appearance of fracture surfaces after tensile testing showed these differences. This investigation also suggests that for the aluminium-silicon alloys containing 20% and 27% silicon do not require any expensive and time consuming thermal treatment operations, since properties do not improve with such treatments.
893
Abstract: An effective way to reduce the weight of vehicle body seems to be application of new materials, and such trend is remarkable. Among the various materials for automobile body, stainless steel sheets and cold rolled steel sheets are under the interests. However, in order to guarantee reliability of new material and to establish the long life fatigue design criteria for body structure, it is necessary to assess spot weldability and fatigue strength of spot welded lap joints fabricated under optimized spot welding condition. In this paper, spot weldability of stainless steel sheets, STS301L and STS304L, and cold rolled steel sheets, SPCC and SPCD. Fatigue strength of lap joints spot welded between similar and dissimilar materials were also assessed.
899

Showing 141 to 150 of 253 Paper Titles