Key Engineering Materials Vols. 309-311

Paper Title Page

Abstract: A novel hydroxyapatite (HA-A) was developed and we evaluated the slow release of antibiotic in vitro as well as osteoconduction of the material in vivo. HA-A (4 x 4 mm) was synthesized by mixing HA powder, gelatin, and vegetable oil. The material had a bi-modal pore size distribution, with intragranular (10 nm to 10 µm) and intergranular (100 µm) pores, and porosity of 40 vol%, while a control HA had pore sizes ranging from 50 to 300 µm and identical porosity. In vitro drug release was tested using antibiotics soaked on the HA cylinders using a vacuum system. The mean adsorption efficiency was higher for HA-A than for control and higher levels of antibiotic were released from HA-A. Bone ingrowth into the pores was observed for both materials. Since the novel HA showed both the slower release of antibiotic (nanosize pores) and supported excellent osteoconduction (microsize pores), it could be useful for the treatment of osteomyelitis.
949
Abstract: A novel composite of biodegradable Poly-L-lactic acid (PLLA) with the deposition of the nanosized amorphous calcium phosphate (NCP) particles was developed as tissue engineering scaffold. To improve the minor intrinsic healing capacity of cartilage tissue, the porous composite with desired degradation rate was incorporated with basic fibroblast growth factor (bFGF) and evaluated in the in vivo environment. Full-thickness defects were created in the weight-bearing surface of the femoral condyles in a rabbit model. The defect was filled with and without NCP/PLLA scaffold as a carrier of bFGF. Gross morphology for the test implant showed that the defect was filled with regenerated tissue. It resembled cartilaginous tissue and restored the contour of the condyle at 8 weeks after operation. For the untreated control, no cartilage-like tissue was observed at all defects. Histological analysis revealed neochondrogenesis and clusters of cartilaginous extracellular matrix observed with safranin-O staining at 4 weeks for the NCP/PLLA with bFGF treated defects. At 8 weeks after operation, well-formed and mature cartilage was resurfaced the defects. While only fibrous tissue replacement was observed for the control either at 4 or 8 weeks. Special staining for cartilage indicated the presence of highly sulfated glycosaminoglycans and collagen, which were the major extracellular matrices of cartilage. This investigation showed the potential of NCP/PLLA loaded with bFGF in the study of in situ-transplantable carrier to improve healing of cartilage tissue lesion.
953
Abstract: Calcium phosphate cement is a bioceramic with potential applications for bone-tissue engineering. In this work, controlled porous calcium phosphate scaffolds with interconnected pores were computationally designed by an image-based approach and fabricated by indirect solid freeform fabrication (ISFF) or ‘lost mold’ technique. Voxel finite-element analysis (FEA) showed that mechanical properties of design and fabricated scaffold can be predicted computationally. Scaffolds were then implanted subcutaneously to demonstrate tissue in-growth. Previously, we showed the ability of porous calcium phosphate cement scaffolds to have sufficiently strong mechanical properties for bone tissue engineering applications. This work shows the image-based FEAs from micro-CT scans in vivo (four- and eight weeks). Extensive new bone apposition was noted with micro-CT technique after four- and eight weeks. FEA models of the original design and scaffolds with newly bone formed were compared.
957
961
Abstract: Hydroxyapatite (HAp) has been used as a biomaterial for hard tissues. Critical characteristics of biomaterials will include surface geometry, hydrophobicity and hydrophilicity, crystallinity, biodegradation rates, and release pharmacokinetics (PK) of incorporated molecules such as BMP-2. Optimizing BMP-2 for clinical application may be dependent on localized sustained release from biomaterials. We forcused on in vivo local BMP-2 PK and bone induction in two ceramics systems, based on different surface structures. The functionally graded apatites (fg-HAp) was designed by the step-wise calcinations and partial dissolution-precipitation methods. We estimated the in vivo release profile of 125I-labeled BMP-2 from fg-HAp and the dose response of bone induction by BMP-2 in the back subcutis histologically. Bulk-HAp (b-HAp) by only the step-wise calcinations was prepared as a control. The amount of BMP-2 remaining in the fg-HAp at 1 day after implantation was 83.8%, while that was 34.6% in the b-HAp. Moreover, ectopic bone formation were found surely in the fg-HAp/BMP-2 (0.5μg) system at 3 weeks, not in the b-HAp/BMP-2 system. By using fg-HAp, it is likely that an extremely low dose of BMP-2 is enough to enhance bone induction if BMP-2 is appropriately delivered to the site of action.
965
Abstract: The release kinetics of recombinant human bone morphogenetic protein-2 (rhBMP-2) loaded poly(DL-lactic-co-glycolic acid)/calcium phosphate cement (PLGA/Ca-P cement) composites were studied in vivo. RhBMP-2 was radiolabeled with 131I and entrapped within PLGA microparticles or adsorbed onto the microparticle surface. PLGA microparticles were prepared of high molecular weight (HMW) PLGA (weight average molecular weight [Mw] 49,100 ± 1,700) or low molecular weight (LMW) PLGA (Mw 5,900 ± 300) and used for preparation of 30:70 wt% PLGA/Ca-P cement composite discs. Release of 131I-rhBMP-2 loaded composites was assessed by scintigraphic imaging according to a 22 two-level full factorial design in the rat ectopic model during four weeks. In vivo release kinetics varied among formulations. All formulations showed slow release without initial burst, and displayed a linear release from 3 to 28 days. Release of LMW entrapped rhBMP-2 composites (1.7 ± 0.3%/day) was significantly faster than release from other formulations (p < 0.01). After 28 days, retention within the composites was 65 ± 5%, 75 ± 4%, 50 ± 4% and 70 ± 6% of the initial rhBMP-2 for HMW entrapped, HMW adsorbed, LMW entrapped and LMW adsorbed rhBMP-2 composites, respectively. Release from the composite was probably slowed down by an interaction of rhBMP-2 and Ca-P cement after rhBMP-2 release from PLGA microparticles. We conclude that PLGA/Ca-P cement composites can be considered as sustained slow release vehicles and that the release and retention of rhBMP-2 can be modified according to the desired profile to a limited extent.
973
Abstract: Transplantation surgeries of autologous bone require a second surgery with inherent risks. To avoid these risks, we developed a multi porous implant of hydroxyapatite/collagen composite with desirable biophysical properties (flexibility, elasticity and compression resistance) for use with OP-1 as a graft implant. In this study, we tested the efficacy of this multi porous implant as OP-1 carrier using rabbit posterolateral lumbar fusion model (PLF). PLFs were performed in the following 4 groups of 8 New Zealand white rabbits each: autograft, HAp/Col alone, HAp/Col plus 0.3 mg OP-1, and HAp/Col plus 1.2 mg OP-1. At 5 weeks, fusion masses were analyzed by radiographic and biomechanical tests. Implants consisting of HAp/Col plus OP-1 were more effective than autologous bone in promoting spinal fusion. Low dose and high dose OP-1 were equally effective.
977
Abstract: This study was performed to evaluate the effect of anorganic bone mineral (ABM) coated with Tetra-Cell Adhesion Molecule (T-CAM) for bone formation in rabbit calvarial defects and compare the capability of bone formation in ABM coated with T-CAM (ABM/T-CAM) to that in commercially available ABM coated with a synthetic peptide (P-15) which mimics the cell-binding domain of type I collagen, PepGen P-15TM. T-CAM composed of four cell adhesion molecules (RGD, PHSRN, EPDIM, and YH) was synthesized and ABM/T-CAM were prepared by absorbing T-CAM on ABM (OsteoGraf/N-300; Densply Friadent Ceramed Corp., USA). Two 9-mm diameter, full-thickness calvarial defects were made in each rabbit parietal bone and sixteen adult male rabbits were used in this experiment. The defects were reconstructed according to four treatment groups: unfilled, BM-grafted, PepGen P-15TM-grafted, and ABM/T-CAM-grafted. The animals were sacrificed at 2 and 4 weeks after surgery for histologic and histomorphometric evaluation. An active new bone formation were observed in the defects of ABM/T-CAM and PepGen P-15TM grafted groups at 2 and 4 weeks of healing in histologic observation. The results of histomorphometric analysis revealed higher new bone formation in ABM/T-CAM-grafted (14.62±0.6% at 2 weeks, 15.33±2.4% at 4 weeks) and PepGen P-15TM-grafted (12.46±1.0% at 2 weeks, 18.14±1.7% at 4 weeks) groups than in unfilled control (7.03±2.3% at 2 weeks, 8.71±3.4% at 4 weeks) and ABMgrafted (6.59±1.7% at 2 weeks, 9.25±0.8% at 4 weeks) groups at 2 and 4 weeks of healing with statistical significance (P<0.01). The results of this study indicated that the immobilizing T-CAM on ABM enhances the capability of bone substitutes to serve as an effective habitat for bone forming cells in vivo. In conclusion, we suggested that this composite graft material, ABM/T-CAM may be served as an effective tissue-engineered bone graft material in osseous reconstructive surgery.
981
Abstract: As a part of the effort to develop a suitable scaffold for tissue-engineered bone regeneration, we modified calcium metaphosphate (CMP) ceramic with Na20 and evaluated its efficiency as a scaffold. We incorporate 5% Na20 into pure CMP and prepare for an average pore size of 250 or 450 µm average pore sizes. The incorporation of 5% Na2O caused reduced compressive strength and there was no change in biodegradability. The in vitro cellular attachment and proliferation rate, however, were slightly improved. The 5% Na2O-incorporated macroporous CMP ceramic-cell constructs treated with Emdogain induced ectopic bone formation more effectively than those without Emdogain treatment. These results suggest that the incorporation of 5% Na2O into pure CMP is not effective for improving the physical characteristics of pure CMP but it is positive for improving the cellular reaction and osteogenic effect with the addition of Emdogain.
985

Showing 231 to 240 of 343 Paper Titles