Key Engineering Materials
Vol. 459
Vol. 459
Key Engineering Materials
Vol. 458
Vol. 458
Key Engineering Materials
Vol. 457
Vol. 457
Key Engineering Materials
Vol. 456
Vol. 456
Key Engineering Materials
Vol. 455
Vol. 455
Key Engineering Materials
Vol. 454
Vol. 454
Key Engineering Materials
Vols. 452-453
Vols. 452-453
Key Engineering Materials
Vol. 451
Vol. 451
Key Engineering Materials
Vol. 450
Vol. 450
Key Engineering Materials
Vol. 449
Vol. 449
Key Engineering Materials
Vols. 447-448
Vols. 447-448
Key Engineering Materials
Vol. 446
Vol. 446
Key Engineering Materials
Vol. 445
Vol. 445
Key Engineering Materials Vols. 452-453
Paper Title Page
Abstract: If the crystal grain size of a metal is made smaller, its strength is higher. So, many methods of grain refinement have been proposed. In this study, from the viewpoint of basic plastic working, the variations of static ultimate tensile strength and fatigue strength after the application of plastic torsional deformation on face centered cubic crystal metals, that are, aluminum and copper, were investigated. Tensile test, Vickers harness test and Rotating bending fatigue test were performed. The hardness of the materials varied from surface layer to center section in cross sectional area. In the case of aluminum, the tensile strength and fatigue limit were improved after application of torsional deformation. However, in the case of copper, the fatigue limit was not improved. This is strongly related to hardness distribution around the surface layer of the specimen. Also, it was found that the crack growth mode was changed by applying the pre-strain. From these results, one of an idea for improvement of material strength will be considered.
597
Abstract: The enhancement method of fatigue life and the crack initiate and growth behavior of a holed specimen was investigated by using the 2024 Aluminum alloy and 0.45% Carbon steel. The purpose of present study is to propose a simple technical method for enhancement of fatigue life in a notched specimen. Also, the effect of local plastic deformation by cold work on fatigue crack initiation behavior was examined. This paper presents a basic experimental kinematic cold expansion method by inserting and removing a pin through the specimen hole. The shape of cross-section of pin was a circle or an ellipse. It was shown that the fatigue life of the specimen with the cold-worked hole was longer than that of the specimen with non-cold-worked hole for the case of same stress level in aluminum alloy and carbon steel. Also, the fatigue strength was higher in the case of the cold expanded hole. In this study, a methodology of lengthening of fatigue life of holed specimen is shown. Also, the improvement conditions of fatigue life were significantly affected by shape of pin, local hardening and residual stress conditions. The fatigue life improvement of the damaged component of structures was studied.
601
Abstract: The Fatemi–Socie criterion is evaluated using the combined axial torsion fatigue testing results obtained from extensive experiments on thin-walled tubular specimens made from 304 stainless steel. The Fatemi–Socie criterion combines the maximum shear strain amplitude with a consideration of the normal stress on the critical plane. Rainflow cycle counting and Morrow’s plastic work interaction rule are used to calculate fatigue damage. The fatigue life prediction is conducted by using the maximum shear strain plane as the critical plane by considering the weight function and the maximum damage plane as the critical plane. It is concluded that the results gained by two approaches are both acceptable for the case examined.
605
Abstract: Fatigue tests under transverse vibration were performed for three separate tightening conditions to investigate the grip length and the engaging thread length in this study. The relationships between the apparent fatigue limit (the highest amplitude of transverse vibration force which can be applied to the bolted joint without generating fatigue) and the real fatigue limit of bolt material also were investigated. Results showed that apparent transverse fatigue limit decreased if the grip length was long. And relationships of the apparent fatigue limit and the real fatigue limit were different in each tightening conditions depending on the bending moment at the root of the first thread.
609
Abstract: The experimental research for single shear bolted connection of cold-formed stainless steel fabricated with two bolts (2×1 bolt arrangement) has been conducted by T.S. Kim etc. Plate thickness and end distance parallel to the direction of loading was considered as main variables. It is found that the curling occurred easily in bolted connections with a long end distance and thinner plate. In this paper, finite element analysis study has been performed in order to compare test results with the predicted results and to investigate in detail the ultimate strength and curling influence. Finite element analysis(FEA) procedures also were introduced. FE models of connections with restrained out of plane deformation were also simulated for comparison with the curled models.
Therefore, the validation of FEA in predicting ultimate strength and curling behavior was verified and the strength reduction ratio caused by curling was estimated.
613
Abstract: The application of stainless steel in buildings has been increased gradually with excellent life cycle cost for ensuring the sustainability in structures for the reduction of green house gas emission. Especially, the purpose of this paper is to investigate the structural behaviors such as ultimate strength, fracture mode and out of plane deformation, i.e., curling of single shear bolted connection of cold-formed austenitic stainless steel with two bolts (2×1 bolt arrangement). Plate thickness and end distance parallel to the direction of applied force are considered as main variables. The curling was also observed in the bolted connections with a long end distance and edge distance as the previous researches. Curling occurrence resulted in the change of fracture modes in connections with same bolt arrangement and end distance and ultimate strength reduction.
617
Abstract: A constitutive model for ductile porous material is formulated within the thermodynamic framework. A yield function based on the lower-bound solution for a cylindrical void model embedded in a plastic matrix is proposed. The new yield function is compared to the classical Gurson yield function using cell model calculations. The results reveal that the proposed yield function agreed well with the plastic region found from the cell model calculations.
In addition to the influence of the void-volume ratio, the elastic part of the free energy is dependent on a scalar damage field which allows the elasticity to be influenced by the void-volume fraction. The degradation is controlled by a scalar valued damage field and enters the formulation via the Helmholtz's free energy. This dependence allows the elastic properties to naturally depend upon the damage accumulation. The numerical treatment of the model is derived and the capability of the model is demonstrated via numerical simulation of the necking of an axi-symmetric bar.
621
Abstract: This paper deals with an analysis of a crack-tip field of particulate-reinforced composites which can describe the evolution of debonding damage, matrix plasticity and particle size effect on deformation and damage. Numerical analyses were carried out on a crack-tip field in elastic-plastic matrix composites reinforced with elastic particles by using a finite element method developed based on an incremental damage theory. The particle size effect on damage is described by a critical energy criterion for particle-matrix interfacial debonding. The effect of debonding damage on a crack-tip field is discussed based on numerical results. The debonding damage initiates and progresses ahead of a crack-tip. The stress distribution shifts downward in the debonding damage area. It is concluded that a crack-tip field is strongly affected by debonding damage.
625
Abstract: Self compacting concrete is a concrete mixture specifically designed not to require external energy for compaction. This property results in many advantages for precast as well as ready-mix concrete applications. Especially, dense reinforcements or slender elements can be achieved. However, in current design codes this concrete is treated as traditional concrete although the mix composition is substantially different. Due to a decrease in coarse aggregates, combined with a higher amount of chemical and mineral admixtures, the overall mechanical behavior may differ from that of traditional concrete even when the compressive strength of both mixtures are equal. This is especially visible in the crack formation in the tensile zone of concrete beams. This paper presents results of an analysis of crack formation, distribution and width on reinforced concrete beams with varying reinforcement ratios. Differences in crack properties, favoring self-compacted over traditional concrete are found for all considered reinforcement ratios, although the results are less pronounced for the higher ratios. The results may allow a favorable serviceability limit state criteria for this material.
629
Abstract: Many civil structures are subjected to dynamic loading with load cycles exceeding 100.000 to 100.000.000 or more depending on the type of structure. At such high amounts of load cycles concrete can fail due to fatigue damage. The phenomenon is well understood and documented in the literature for traditional concrete. It remains unclear whether these conclusions can be transferred to self-compacting concrete (SCC), due to changes in concrete composition, decrease in the size of the coarse aggregates in combination with the addition of filler and superplasticizer. For this paper several reinforced concrete beams with varying reinforcement ratios are subjected to dynamic loads in a four point bending rig until failure. The imposed stress levels for the dynamic loading range between 0,80fcc and 0,85fcc. The main conclusions of the experimental tests are (1) clearly different failure mechanisms determine the static and dynamic loading for a single type of beam, (2) SCC appears to have a somewhat lower shear resistance during fatigue, (3) the differences in flexural degradation between SCC and TC beams are rather small.
633