Key Engineering Materials Vols. 471-472

Paper Title Page

Abstract: The study is intended to measure the reliability of MPV dashboard to endure interior impact by using finite element analysis (FEA) method. A model which represents MPV dashboard was made using Solidworks and the impact simulation was done using ABAQUS. Current material being used for dashboard is ABS-GF40 and this material was proven to be reliable to withstand interior impact through the simulation that has been done in this study. Besides, this study also serve the purpose to reduce manufacturing cost using alternative materials with no less reliability compared to ABS-GF40. Similar simulation routines were applied for ABS copolymer, PP copolymer, and PVC copolymer. The simulation results showed that ABS-CF40 performance is similar to ABS-GF40, whereas the PP-CF10, PP-GF10, and PVC-GF30 exhibit almost identical behavior under impact loading. Cost assessment was carried out for all materials to assist in selecting alternative material for replacement of ABS-GF40. Hence, it was found that PP-GF10 can be used as an alternative material with cost reduction up to RM33.17 on each dashboard.
634
Abstract: Recently, research on natural fiber reinforced polymer composites has gained importance due to the abundant sources of fibers that can be obtained at very low cost. In this study, wood plastic composite (WPC) materials is made by mixing (compounding) high density polyethylene (HDPE) and (ligno) cellulose fiber, i.e. rice husk reinforced with sawdust have been manufactured using a high volume process using counter rotating twin screw extruder. Different fire retardant agents have been employed in order to improve fire behavior in this study. The flammability and thermal stability of WPC-HDPE based in different compositions have been carried out by fire test method according to ASTM D635-06 and evaluated by thermo gravimetric analysis respectively. The properties of flexural strength and impact strength were also included.
640
Abstract: This paper presented the effect of constituent materials on impact damage and strength reduction of sandwich structure, composed of laminated woven E-glass facesheets and polypropylene thermoplastic honeycomb core. Effect of low-velocity impact was the main interest in a variety of layered configurations. Compression after impact (CAI) has been carried out to determine the residual strength of impacted sandwich structures. Three different thicknesses of core of 20, 40 and 60mm subjected to three different levels of impact energy of 15, 30 and 45J were investigated. Impact response of the panel was recorded and analyzed in terms of peak load, indentation, energy absorbed and time. A profile analysis using optical 3D surfaces profiler was carried out to attain the indentation depth and damage area of the samples. The tested samples were then sectioned into halves to capture the failure mode or damaged sequence of the polypropylene thermoplastic honeycomb core. The dominant failure modes of the core indicated that polypropylene thermoplastic honeycomb core is a high strength material which can absorb higher impact energy and retain a higher degree of structural integrity.
646
Abstract: In this paper, the mechanical properties of carbon fiber polypropylene composites prepared under various process conditions were investigated. Two different types of polypropylene composites were produced by mixing and compressing the mixtures using hot press. The mixture was prepared by mixing polypropylene with chopped carbon fiber and carbon fiber percentage (wt%) was varied. Mechanical properties investigated were tensile test, impact test, bending test and density test. The Scanning Electron Microscopy (SEM) was employed to study the morphology of the composites. The highest tensile strength was obtained for polypropylene (MFI 60) composites reinforced with 10 wt% carbon fiber. The composite also exhibited the best tensile and flexural properties.
652
Abstract: New Reddy-type elements based on Reddy’s higher-order theory are used in the analysis of composite sandwich plates with viscoelastic core, which is achieved by considering independent transverse displacements on two faces and linear variations through depth of plate core. In addition, Young modulus, rotational inertia, and kinetic energy of core are considered and core is assumed as 3D elastic structure with the properties of an orthotropic viscoelastic material. To improve the Reddy’s higher-order theory, a rectangular element with four nodes, which each node has seven degrees of freedom, is proposed. Hamilton’s principle has been used to obtain the equations of motion. A finite element code for structural response analysis of the free vibration is developed. The obtained results are compared with existence researches. The influence of material properties, lamination schemes, and fiber angle on natural frequencies of composite plates are investigated.
658
Abstract: In this paper, to investigate energy absorption capability of hybrid (metal-composite) square tubes under axial loading, a new theory is proposed based on collapse mode of metal square tubes and considering off-axis strength of each layer of composite. An expression is derived for mean crushing load and folding wave length in terms of mechanical properties and geometrical dimensions of metal tube and composite prepregs wrapped around it. To validate the theoretical model, predicted values for mean crushing load are compared with experimental and numerical results that show reasonably good agreement.
664
Abstract: In this study, the formation of Fe-TiC composite through carbothermal reduction of hematite and anatase was investigated with various sintering temperature. Mixture of hematite and anatase powders was milled with graphite for 20 hours in a high energy ball mill in argon atmosphere with composition of Fe-30%volTiC. The as-milled powder was analyzed with X-ray diffraction analysis and the result shows broadening of hematite peaks with disappearance of anatase and graphite peaks due to refinement of powder and diffusion of carbon. The as-milled powder was cold pressed under 200 MPa and sintered in argon atmosphere at various sintering temperature i.e, 1200°C, 1300°C and 1400°C. Higher sintering temperature facilitated reduction of hematite and anatase to produce Fe-TiC composite.
670
Abstract: This work is aimed at achieving optimum processing parameters for Kenaf/PALF/HDPE. Processing parameters like temperature, speed of rotor and duration of composite mixing in an internal mixer were examined. Oven conditioned and unconditioned specimen were prepared and tested. The best tensile strength and tensile modulus were obtained at an optimum processing parameters of 190oC, 40rpm, and 15min for temperature of processing, speed of rotor and duration of mixing respectively, while 190oC, 40rpm and 20min gave the best flexural strength and 190oC, 40rpm and 25min for flexural modulus. Conditioning of composite tends to reduce its tensile modulus while increasing its strength and flexural modulus. All samples were produced at only 10w%(mass) of fibre in the composite at 1:1 and less than 0.3mm fibre ratio and length respectively. Utilization of these parameters according to end requirement can help in achieving optimum mechanical properties on hybridized composites.
674
Abstract: Hybridization, especially where only variant natural lignocelluloses are combined, is fast receiving encouraging attention because it offers range of properties that are quite difficult to obtain with a single kind of reinforcement. In this work, tensile strength and modulus of hybridized kenaf/PALF reinforced HDPE composite was examined. Pellets were produced form the mixture of the composite in an internal mixer at 190oC, 40rpm and 25minutes for processing temperature, speed and duration of mixing respectively. The composite sheets with thickness of 1mm produced from pellets were prepared using compression moulding. Then the tensile specimen were prepared and tested using an INSTRON bluehill universal testing machine according to ASTM D638 requirements. All samples were prepared at 1:1 kenaf:PALF ratio; ≤0.25mm and ≤0.5mm fibre length; fiber loading of 10 to 40% were utilized. Linear relationship of tensile modulus was observed with about 26% reduction in tensile strength at 10% fibre loading that subsequently reduced but with a reversal increase at 40% fibre loading. This was attributed to a better supportive load at that fibre content and a better interaction between fibre and matrix. Furthermore, the result also corroborates with the one obtained for the tensile modulus at same fibre loading. The best tensile strength and tensile modulus obtained was 32.43MPa;642.61MPa and 30.01MPa;636.73MPa for 0.25mm and 0.5mm fibre length respectively. Increase in fibre length did not show any significant improvement in tensile strength which may have been coursed by fibre attrition. It is possible to achieve improved mechanical properties if the fibres are given some kind of treatment.
680
Abstract: Natural fibre-based thermoset composites are generally lower in strength performance compared to synthetic thermoset composites. Hybridization with some amount of synthetic fibre enhanced the mechanical properties of the composites. This study focused on the performance of mechanical properties of hybrid banana/glass fibre reinforced polyester composites. Hybrid composites with different volume ratios of banana to glass fibre were prepared. The reinforcing effect of both fibres in polyester is also evaluated in various fibre loadings. Results showed that both flexural and tensile properties have been improved with the increasing level of overall fibre content loading. Tensile and flexural strength shows great enhancement by the introduction of a slight amount of glass fibre to the banana fibre polyester matrix.
686

Showing 111 to 120 of 205 Paper Titles