Key Engineering Materials Vols. 471-472

Paper Title Page

Abstract: In this research, an advanced signal processing technique using wavelet analysis has been developed for a guided wave structural health monitoring system. The approach was applied for the detection of delamination in carbon fibre reinforced composites. A monolithic piezoceramic actuator was attached to a laminate plate for wave generation while laser vibrometry was used to facilitate the measurements of the wave response in a sensor network. This database of wave response was then processed using the continuous wavelet transform to obtain the positional frequency content. Transforms between damaged and undamaged states were compared to ascertain the presence of defects by evaluating the total energy of the time-frequency density function. Results show high damage detection indices depending on the location of the sensor and normalisation factor applied while there are positive indications that this methodology can be extended for damage characterisation.
809
Abstract: The potential of using cellulose to reinforce the thermal stability of kenaf derived cellulose (KDC)/polylactic acid (PLA) composite was investigated in this study. The cellulose was derived from kenaf bast fibre which was chemically treated via chlorination and mercerisation processes. The composites with various loadings of cellulose (dry weight basis) ranging from 0% to 60% were produced by melt mixing and compression moulding. Dynamic mechanical properties namely storage modulus (E’), loss modulus (E”) and tan δ of the KDC/PLA composites and the commercial PLA were analysed and compared as a function of temperature. ESEM micrographs demonstrated that the mercerisation of kenaf fibres have successfully removed the lignin and hemicellulose, thus producing cellulose which can be observed by its rougher surface and greater size reduction than the raw fibre. The DMA results demonstrated that the storage modulus of 60% KDC/PLA composite is twice higher than the commercial PLA and the rest of the composites within a high temperature range (above 80°C). The glass transition temperatures (Tg) generated from the loss modulus curves exhibit that the peak of the loss modulus was shifted to higher temperature as the percentage of the cellulose loading was increased. These results show a better thermal stability of the composites when incorporated with the cellulose.
815
Abstract: In this paper, the hardness property of abaca (Musa textile Nee) fibre reinforced high impact polystyrene (HIPS) composites with maelic anhydride (MAH) used as coupling agent and styrene butadiene styrene (SBS) copolymer rubber (Cyclo resin) used as impact modifier was investigated using response surface methodology.. The composites were initially fabricated using a rolling machine and finally using a hot press machine to obtain a desired thickness. These samples were then tested for Brinell hardness test. A statistical approach of response surface methodology was used to obtain the interaction between various compositions mentioned above for abaca fibre reinforced HIPS composites. The BHN (Brinell hardness number) was analyzed using response surface methodology (Box Behnken method).
821
Abstract: In this study, blends of ultra high molecular weight polyethylene/high density polyethylene/polyethylene glycol (UHMWPE/HDPE/PEG) and the composites containing Hydroxyapatite (HA) as reinforcement filler were prepared via single screw extruder nanomixer followed by compression moulding. PEG (2phr) was used as processing aid and HA loadings were varied from 10 to 50 phr. HDPE and PEG were introduced to improve the extrudability of UHMWPE. Rheological behavior was studied via capillary rheometer while flexural and izod impact tests were conducted in order to investigate the mechanical properties of the blends and composites. Melt viscosity of the blends was found to decrease with increasing shear rate indicating a pseudoplastic behaviour. Incorporation of PEG shows a synergism effect on the reduction of blends viscosity. Blend of 40% UHMWPE/ 60% HDPE/ 2 phr PEG was chosen as the optimum blend composition with a balance properties in terms of the mechanical properties and processability. The incorporation of HA fillers from 10 to 50 phr into the blend resulted in the increase of flexural modulus and flexural strength with a slight decline of impact strength values. It can be concluded that the composites having adequate strength and modulus within the range of cancellous bone properties were succesfully developed to be used as biomedical implant devices.
827
Abstract: In this paper, the finite element analysis is used to investigate the effect of shape of dome ends on the buckling of pressure vessel heads under external pressure. The Finite Element Analysis (FEA) with the use of elastic buckling analysis was applied to predict the critical buckling pressure. The influence of geometrical parameters such as thickness, knuckle radius, and the ratio of minor axis to the major axis of dome ends, on the weight and the critical buckling pressure of hemispherical, ellipsoidal, and torispherical dome ends, was studied. The four-centered ellipse method was used to describe the geometry of the dome end.
833
Abstract: This research was conducted to study the feasibility of producing medium density fibreboard (MDF) from 4-year old rubberwood clone RRIM 2020. The 4-year old rubberwood is obtained from different planting densities, which is 500, 1000, 1500 and 2000 trees/ha and were processed to produce MDF. The MDF is analyzed in term of its mechanical properties (static bending and densities to comply with JIS A 5905-2006 Standard (Type 30, MOR > 30.0 MPa and MOE > 2500 MPa and Type 25, MOR > 25.0 - 30.0 MPa and MOE > 2000 - 2500 MPa). MDF made from 25 year trees clone, PB260 which come from the same clone was used as a control. The results showed that the PB260 and the 4-year old rubberwood clone with planting densities of 500 trees/ha satisfied the requirement of Type 30, and the remaining passed at Type 25. It shows that it is feasible to produce an MDF using the 4-year old rubberwood clone.
839
Abstract: Rattan for its potential as a new type of filler was investigated in natural rubber (NR) compounds. Natural rubber (NR) compounds were prepared by the incorporation of rattan at different loadings into a natural rubber matrix with a laboratory size two roll mill. The effect of rattan loading as filler on curing characteristics, tensile properties, morphological properties using scanning electron microscopy (SEM) and rubber–filler interaction of rattan filled natural rubber compound were studied in the filler loading range of 0 to 30 phr. The results indicate that the scorch time (ts2) and cure time (t90) shorten with increasing filler loading, whereas the maximum torque (MH) showed an increasing trend. As the filler loading increases, the tensile strength and elongation at break decreases whilst tensile modulus; stress at 100 % elongation and stress at 300 % elongation increased. The rubber filler interactions of the rubber compound decreased with increasing filler loading. SEM studies indicate that the increasing rattan loading weakens the rubber-rattan interactions.
845
Abstract: The study of chitosan loading onto epoxidized natural rubber compounds were prepared by incorporation of chitosan into epoxidised natural rubber matrix using a two-roll mill. The effects of chitosan loading on the curing characteristics, tensile properties and morphology of the compounds were investigated. Results indicated that slight changes in curing time (t90), and scorch time (tS2) of the compounds with the incorporation of chitosan. An increment is observed in the maximum torque, tensile modulus and durometer hardness of the compounds while tensile strength and elongation at break declines with chitosan loading.
851
Abstract: Paper has been removed due to violation of citations rules (not citing published work by other peoples).
857
Abstract: Paper has been removed due to violation of citations rules (not citing published work by other peoples).
862

Showing 141 to 150 of 205 Paper Titles