Key Engineering Materials
Vols. 480-481
Vols. 480-481
Key Engineering Materials
Vol. 479
Vol. 479
Key Engineering Materials
Vol. 478
Vol. 478
Key Engineering Materials
Vol. 477
Vol. 477
Key Engineering Materials
Vols. 474-476
Vols. 474-476
Key Engineering Materials
Vol. 473
Vol. 473
Key Engineering Materials
Vols. 471-472
Vols. 471-472
Key Engineering Materials
Vol. 470
Vol. 470
Key Engineering Materials
Vols. 467-469
Vols. 467-469
Key Engineering Materials
Vol. 466
Vol. 466
Key Engineering Materials
Vol. 465
Vol. 465
Key Engineering Materials
Vol. 464
Vol. 464
Key Engineering Materials
Vols. 462-463
Vols. 462-463
Key Engineering Materials Vols. 471-472
Paper Title Page
Abstract: The applications of Carbon Fiber Reinforced Polymers (CFRP) in construction have been grown drastically in the last 20 years because of the wide range of advantages and benefits of using CFRP in buildings, bridges and other type of structures. Nowadays, it is used for retrofitting concrete, masonry, steel and timber structures to resist both static and dynamic loads. Since the cost of replacing an existing structure is far more expensive than using FRP materials to strengthen it, CFRP strengthening techniques seem to be cost effective and easy to implement. Numerous experimental and numerical studies have been conducted to investigate the flexural and shear performance of uncracked reinforced concrete (RC) members externally strengthened with CFRP laminates or strips. However, the most practical usage of CFRP is to retrofit sections that had already been cracked and in need of maintenance. The fact that there have been limited studies to investigate the behavior and performance of pre-cracked beams strengthened with CFRP systems necessitated new and further investigations. In this study, the flexural performance of cracked RC beams retrofitted with CFRP plates and epoxy injections are investigated. The results of the cracked beams are compared with two control beams, a virgin un-strengthened beam and an uncracked beam strengthened with a CFRP plate covering 90% of the beam’s span. Load-midspan deflections for these beams were generated and compared. It is observed that the retrofitted cracked beams displayed more strength than the control beam. The results presented herein can aid designers in establishing a better understanding of the flexural performance of pre-cracked beams and how to economically retrofit such structural members.
692
Abstract: Seismic retrofitting of reinforced concrete (RC) beams by means of carbon fiber reinforced polymer (CFRP) composites is one of the state-of-the-art techniques that have been widely practiced lately. Such external strengthening schemes seem to enhance both stiffness and strength of RC beams when subjected to static and cyclic loading. Extensive research investigation has been carried out for beams subjected to monotonic static loading while limited research data is available for beams subjected to cyclic loadings. Therefore, this study is initiated and its aim is to present the results of full scale experimental testing of RC beams under four-point-bending loading and subjected to monotonic and cyclic loading histories up to failure of the specimens. An unstrengthened RC beam was tested monotonically to serve as a bench-mark. The remaining two externally strengthened RC beams with different anchorage schemes were tested under cyclic loading. The strengthening test matrix included beams bonded with a unidirectional CFRP plate that covers 90% of the beam's soffit length, with one or two unidirectional layers of CFRP wraps at anchorage locations along the beam's length. The anchorage locations were at the edges of the CFRP plate and at the middle of the beam's span. The results presented herein show an increase in the overall strength for the strengthened beams over the unstrengthened ones. The different failure modes and the resulting ductility of the tested specimens are also discussed. This study is considered to be the first part of an extensive program that aims to investigate the different parameters that govern the external strengthening techniques of RC beams when subjected to cyclic loading.
697
Abstract: Delamination is a major problem associated with composite materials that reduce the stiffness of structure used in aerospace, marine and automotive technology. Interlaminar fracture toughness, non dimensional stress intensity factors and delamination crack growth behavior were investigated for carbon fiber (CF)-polyester laminates. All tests were performed with modified version of Arcan specimen. By changing the loading angles in range of 0-90°, mode-I, mode-II and all mixed mode fracture toughness data were obtained. Correction factors were obtained with finite element analysis using Abaqus software. By employing experimentally measured critical loads and the aid of the finite element method, mixed-mode fracture toughness for the composite under consideration determined. The fracture surfaces of the CF-P under different mixed-mode loading conditions were examined by optical and scanning electron microscopy (SEM) to gain insight into the failure responses.
703
Abstract: Large deflection analysis of thin and relatively thick rectangular functionally graded plates is studied in this paper. It is assumed that the mechanical properties of the plate, graded through the thickness, are described by a simple power law distribution in terms of the volume fractions of constituents. The plate is assumed to be under lateral pressure load. The fundamental equations for rectangular plates of FGM are obtained using the classical laminated plate theory (CLPT), first order shear deformation theory (FSDT) and higher order shear deformation theory (HSDT) for large deflection and the solution is obtained by minimization of the total potential energy.
709
Abstract: The aim of this study is to investigate on manufacturing new tannin phenol-formaldehyde resin as adhesive in paulownia composite. For this purpose, renewable tannin was introduced in the classic adhesive formulation in order to supply a part of phenol–formaldehyde (PF). Variables were substituted tannin with phenol at two levels (0%, 10 % and 20%) and press temperature (150Co and 170Co). plywood panels were manufactured in laboratory. Mechanical (MOR and MOE and) and physical (TS and WA) properties of panels were evaluated according to ASTM standard. Data collected based on factorial design and using SPSS software were analyzed. The Results showed that substitution tannin with phenol had slight effect on mechanical properties but when press temperature increased mechanical properties were improved. Physical properties of plywood panels bonded with tannin–PF resins (20:80) were better than plywood panels PF made.
715
Abstract: The effects of subjecting solidifying particulate reinforced aluminium alloy matrix composite to various sources of vibration on the resulting casting quality, a mechanical vibration technique for inducing vibration resulting in enhanced mechanical properties, such as impact properties is devised. TiC particulate reinforced LM6 alloy matrix composites are fabricated by different particulate weight fraction of titanium dioxide and microstructure studies were conducted to determine the impact strength and density, respectively. Preliminary works show that the mechanical properties have been improved by using vibration mold during solidification compared to gravity castings without vibration.
721
Abstract: This paper describes an experimental investigation of the tensile properties of quartz-silicon dioxide particulate reinforced LM6 aluminium alloy composite. In this experimental, quartz-silicon dioxide particulate reinforced LM6 composite were fabricated by carbon dioxide sand moulding process with variation of the particulate content on percentage of weight. Tensile tests were conducted to determine tensile strength and modulus of elasticity followed by fracture surface analysis using scanning electron microscope to characterize the morphological aspects of the test samples after tensile testing. The results show that the tensile strength of the composites decreased with increasing of quartz particulate content. In addition, this research article is well featured by the particulate-matrix bonding and interface studies which have been conducted to understand the processed composite materials mechanical behaviour. It was well supported by the fractographs taken using the scanning electron microscope (SEM). The composition of SiO2 particulate in composite was increased as shown in EDX Spectrum and Fractograph.
727
Friction Forces between Sheet Molding Compound Charge and Mold Cavity Surface in Compression Molding
Abstract: In this study, three relevant friction forces: constant friction force, hydrodynamic friction force and coulomb friction force are considered between sheet molding compound (SMC) charge and contact surface of the mold. The power law model is implemented to propose a model for prediction of hydrodynamic friction as the dominant friction of the SMC compression molding. The proposed model is simple and does not need any extra experimental parameters. Finally, a model has been developed to predict the molding pressure under non-isothermal conditions. The obtained results of the model are in a very good agreement with the experimental data.
733
Abstract: In this paper, free vibration analysis of thin symmetrically laminated skew plates with fully clamped edges is investigated. The governing differential equation for skew plate which is a fourth order partial differential equation (PDE) is obtained by transforming the differential equation in Cartesian coordinates into skew coordinates. Based on the multi-term extended Kantorovich method (MTEKM) an efficient and accurate approximate closed-form solution is presented for the governing PDE. Application of the MTEKM reduces the governing PDE to a dual set of ordinary differential equations. These sets of equations are then solved with infinite power series solution, in an iterative manner until convergence was achieved. Results of this study show the fast rate of convergence of the MTEKM. Usually two or three iterations are enough to obtain reasonably accurate results. The frequency parameters of laminated composite plates are obtained for different skew angles and lay-up configuration for different composites laminates skew plates. Comparisons have been made with the available results in the literature which show the accuracy and efficiency of the method.
739
Abstract: In this paper, simple analytical expression is presented for large amplitude thermo-mechanical free vibration analysis of asymmetrically laminated composite beams. Euler-Bernoulli assumptions together with Von Karman's strain-displacement relation are employed to derive the nonlinear governing partial differential equation (PDE) of motion. He's variational method is employed to obtain a simple and efficient approximate closed form solution of the nonlinear governing equation. Comparison between results of the present work and those available in literature shows the accuracy of presented technique. Some new results for the nonlinear natural frequencies of the laminated beams such as the effect of vibration amplitude, lay-up configuration and thermal loading are presented for future references.
745