Silicon Carbide - Graphene Nano-Gratings on 4H and 6H Semi-Insulating SiC

Article Preview

Abstract:

A technical methodology of fabrication of hierarchically scaled multitude graphene nanogratings with varying pitches ranging from the micrometer down to sub 40 nm scale combined with sub 10 nm step heights on 4H and 6H semi-insulating SiC for length scale measurements is proposed. The nanogratings were fabricated using electron-beam lithography combined with dry etching of graphene, incorporating a standard semiconductor processing technology. A scientific evaluation of critical dimension, etching step heights, and surface characterization of graphene nanograting on both polytypes were compared and evaluated.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] H. Okumura, Jpn. J. Appl. Phys. 45 (2006) 7565.

Google Scholar

[2] M. Mehregany, C. A. Zorman, N. Rajan e.a., Proc. IEEE, 86, 8, (1998), 1594–1610.

Google Scholar

[3] Y. Tabuchi, K. Ashida, M. Sonoda, e.a., J. Appl. Phys. 122 (2017) 075702.

Google Scholar

[4] Laser interferometer Model SP 5000 NG. SIOS Meßtechnik GmbH. https://sios.de/wp- content/uploads/2020/05/SP-NG_TechnDaten_dt.pdf; last seen 12 February (2021).

Google Scholar

[5] T. Hausotte, B. Percle, U. Gerhardt e.a., Meas. Sci. Technol. 23 (2012) 074004.

Google Scholar

[6] M. Aketagawa, H, Honda, M. Ishige, C. Patamaporn, Meas. Sci. Technol. 18, (2007), 342-349.

DOI: 10.1088/0957-0233/18/2/s04

Google Scholar

[7] J. Stauffenberg, I. Ortlepp, U. Blumröder, e.a., tm-Technisches Messen, (2021), 581-589.

Google Scholar

[8] I.A. Eliseyev, V.Yu Davydov, A.N. Smirnov e.a., Semiconductors 53 (2019) 1904-1909.

Google Scholar

[9] R. Göckeritz, D. Schmidt, M. Beleites e.a. Mater. Sci. Forum 679-680 (2011) 785-788.

Google Scholar

[10] B. Hähnlein, S. P. Lebedev, I.A. Eliseyev e.a., Carbon 170 (2020) 666-676.

Google Scholar

[11] B. Hähnlein, M. Breiter, T. Stauden, e.a., Mater. Sci. Forum 897 (2017) 735–738.

DOI: 10.4028/www.scientific.net/msf.897.735

Google Scholar

[12] J. Penuelas, A. Ouerghi, D. Lucot e.a., Phys. Rev. B 79 (2009) 033408.

Google Scholar

[13] W. Norimatsu and M. Kusunoki, Physica E 42 (2010) 691.

Google Scholar

[14] M. Hatzakis, Appl. Phys. Lett. 18 (1971) 7-10.

Google Scholar

[15] T.H.P. Chang, J. Vac. Sci. Technol. 12 (1975) 1271-1275.

Google Scholar

[16] M. Parikh, J. Appl. Phys. 50 (1979) 4371-4377.

Google Scholar

[17] N. Ohtani, M. Katsuno, T. Aigo e.a. J. Cryst Growth 210 (2000) 613-622.

Google Scholar

[18] J. Yeom, Y. Wu, J.C. Selby e.a., J. Vac. Sci. Technol. B 23 (2005) 2319-2329.

Google Scholar

[19] K. Zekentes, J. Pezoldt and V. Veliadis, Mater. Res. Forum 69 (2020) 175-232.

Google Scholar