Via Size-Dependent Properties of TiAl Ohmic Contacts on 4H-SiC

Article Preview

Abstract:

P-type Ti/Al-based contact vias of different sizes but identical processing were electrically characterized using linear transfer length method (TLM) patterns and metal-oxide-semiconductor (MOS) transistors. While the TLM patterns and MOS transistors with large vias follow ohmic contact behavior, Schottky contact properties were observed for smaller contact via dimensions. Focused ion beam (FIB) analysis of the contact vias verified the presence of Ti3SiC2 on large 66 μm x 25 μm contact vias and its absence on smaller 16 μm x 3 μm ones, correlating its absence with the electrical Schottky properties.

You have full access to the following eBook

Info:

Periodical:

Materials Science Forum (Volume 1062)

Pages:

185-189

Citation:

Online since:

May 2022

Export:

Share:

Citation:

* - Corresponding Author

[1] T. Kimoto, J.A. Cooper, Fundamentals of Silicon Carbide Technology, John Wiley & Sons Singapore Pte. Ltd, Singapore, (2014).

Google Scholar

[2] S. Tsukimoto, K. Ito, Z. Wang, M. Saito, Y. Ikuhara, M. Murakami, Growth and Microstructure of Epitaxial Ti3SiC2 Contact Layers on SiC, Mater. Trans. 50 (2009) 1071–1075.

DOI: 10.2320/matertrans.mc200831

Google Scholar

[3] M. Kocher, Charakterisierung und Modellierung von Ti/Al-basierten ohmschen Kontaktgebieten auf p-dotiertem 4H-Siliciumcarbid, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, (2021).

DOI: 10.17147/asu-2103-7469

Google Scholar

[4] A. Abbasi, S. Roy, R. Murphree, A.-U. Rashid, M.M. Hossain, P. Lai, J. Fraley, T. Erlbacher, Z. Chen, A. Mantooth, Characterization of a Silicon Carbide BCD Process for 300°C Circuits, in: WiPDA 2019: 7th Annual IEEE Workshop, Wide Bandgap Power Devices & Applications Raleigh, NC, Oct. 29-31, IEEE, Piscataway, NJ, 2019, p.231–236.

DOI: 10.1109/wipda46397.2019.8998920

Google Scholar

[5] T. Abi-Tannous, M. Soueidan, G. Ferro, M. Lazar, C. Raynaud, B. Toury, M.-F. Beaufort, J.-F. Barbot, O. Dezellus, D. Planson, A Study on the Temperature of Ohmic Contact to p-Type SiC Based on Ti 3 SiC 2 Phase, IEEE Trans. Electron Devices 63 (2016) 2462–2468.

DOI: 10.1109/ted.2016.2556725

Google Scholar

[6] Prabriputaloong K., Piggott M. R., Reduction of SiO2 by Molten Al, Journal of the American Ceramic Society 56 (1973) 184–185.

DOI: 10.1111/j.1151-2916.1973.tb12451.x

Google Scholar

[7] D.K. Schroder, Semiconductor material and device characterization, Third edition, IEEE Press Wiley-Interscience; IEEE Xplore, Hoboken, New Jersey, Piscataway, New Jersey, (2006).

Google Scholar

[8] F. Roccaforte, A. Frazzetto, G. Greco, F. Giannazzo, P. Fiorenza, R. Lo Nigro, M. Saggio, M. Leszczyński, P. Pristawko, V. Raineri, Critical issues for interfaces to p-type SiC and GaN in power devices, Applied Surface Science 258 (2012) 8324–8333.

DOI: 10.1016/j.apsusc.2012.03.165

Google Scholar

[9] F.A. Mohammad, Y. Cao, K.-C. Chang, L.M. Porter, Comparison of Pt-Based Ohmic Contacts with Ti–Al Ohmic Contacts for p -Type SiC, Jpn. J. Appl. Phys. 44 (2005) 5933–5938.

DOI: 10.1143/jjap.44.5933

Google Scholar

[10] O. Nakatsuka, T. Takei, Y. Koide, M. Murakami, Low Resistance TiAl Ohmic Contacts with Multi-Layered Structure for p-Type 4H-SiC, Mater. Trans. 43 (2002) 1684–1688.

DOI: 10.2320/matertrans.43.1684

Google Scholar