Failure Analysis of Atmospheric Neutron-Induced Single Event Burnout of a Commercial SiC MOSFET

Article Preview

Abstract:

Dealing with electronic devices for high reliability applications in terrestrial environments, neutron-induced Single Event Effects must be investigated. In this paper, the experimental observation of an atmospheric-like neutron-induced Single Event Burnout (SEB) on a packaged commercial SiC power MOSFET is presented after irradiation at ISIS-ChipIr. The effects of the SEB in the electrical properties of the MOSFET are established, and the SiC damaged zone is observed by scanning electron microscopy. Based on this failure analysis at the die level, the distinct stages during the SEB mechanism can be defined. The sensitive volume where the secondary particle deposited enough energy to trigger the SEB mechanism is identified and located inside the SiC n-drift epitaxial layer near the epitaxial layer/substrate junction.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] H. Asai, K. Sugimoto, I. Nashiyama, Y. Iide, K. Shiba, M. Matsuda, Y. Miyazaki, IEEE Transactions on Nuclear Science 59 (2012) 880–885.

DOI: 10.1109/tns.2012.2203145

Google Scholar

[2] T. Shoji, S. Nishida, K. Hamada, H. Tadano, Jpn. J. Appl. Phys. 53 (2014) 04EP03.

Google Scholar

[3] D.J. Lichtenwalner, A. Akturk, J. McGarrity, J. Richmond, T. Barbieri, B. Hull, D. Grider, S. Allen, J.W. Palmour, Materials Science Forum (2018).

DOI: 10.4028/www.scientific.net/msf.924.559

Google Scholar

[4] H. Kono, T. Ohashi, T. Noda, K. Sano, Materials Science Forum (2019).

Google Scholar

[5] A. Akturk, R. Wilkins, J. McGarrity, B. Gersey, IEEE Transactions on Nuclear Science 64 (2017) 529–535.

DOI: 10.1109/tns.2016.2640945

Google Scholar

[6] H. Asai, I. Nashiyama, K. Sugimoto, K. Shiba, Y. Sakaide, Y. Ishimaru, Y. Okazaki, K. Noguchi, T. Morimura, IEEE Transactions on Nuclear Science 61 (2014) 3109–3114.

DOI: 10.1109/tns.2014.2371892

Google Scholar

[7] F. Principato, S. Altieri, L. Abbene, F. Pintacuda, Sensors 20 (2020) 3021.

Google Scholar

[8] C. Martinella, R.G. Alia, R. Stark, A. Coronetti, C. Cazzaniga, M. Kastriotou, Y. Kadi, R. Gaillard, U. Grossner, A. Javanainen, IEEE Transactions on Nuclear Science 68 (2021) 634–641.

DOI: 10.1109/tns.2021.3065122

Google Scholar

[9] K. Niskanen, A.D. Touboul, R.C. Germanicus, A. Michez, A. Javanainen, F. Wrobel, J. Boch, V. Pouget, F. Saigné, IEEE Transactions on Nuclear Science (2020) 1–1.

DOI: 10.1109/tns.2020.2983599

Google Scholar

[10] K. Niskanen, R. Coq Germanicus, A. Michez, F. Wrobel, J. Boch, F. Saigné, A.D. Touboul, IEEE Transactions on Nuclear Science 68 (2021) 1623–1632.

DOI: 10.1109/tns.2021.3077733

Google Scholar

[11] Y. Wang, M. Lin, X.-J. Li, X. Wu, J.-Q. Yang, M.-T. Bao, C.-H. Yu, F. Cao, IEEE Transactions on Electron Devices 66 (2019) 4264–4272.

Google Scholar

[12] D.R. Ball, B.D. Sierawski, K.F. Galloway, R.A. Johnson, M.L. Alles, A.L. Sternberg, A.F. Witulski, R.A. Reed, R.D. Schrimpf, A. Javanainen, J.-M. Lauenstein, IEEE Transactions on Nuclear Science 66 (2019) 337–343.

DOI: 10.1109/tns.2018.2885734

Google Scholar

[13] C. Cazzaniga, C.D. Frost, J. Phys.: Conf. Ser. 1021 (2018) 012037.

Google Scholar